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Abstract

RECONSTRUCTING DYNAMICS IN NEURONAL NETWORKS USING DATA ASSIM-
ILATION

Franz Hamilton, PhD

George Mason University, 2015

Dissertation Director: Dr. Nathalia Peixoto

Understanding the dynamics of the in vivo brain under normal and diseased states is one

of the great challenges of modern scientific study. The overall complexity and dimension of

the brain though can make this problem intractable. In an effort to study these dynamics

in a more controlled, manageable setting, in vitro experimental and computational models

have developed. Additionally, the advancement of mathematical analysis and techniques

has led to a prominent role for data-assisted modeling whereby experimental data is fused

with computational models allowing for data-driven predictions.

The first part of this dissertation will demonstrate the utility of the microelectrode

array in vitro platform for probing the dynamics of cultured spontaneously active neuronal

networks. Specifically, the influences of electrical stimulation on network firing dynamics

will be examined. A low frequency, electric field applied to the network through the culture

media is shown to have a significant effect on the network’s spontaneous firing behavior. This

stimulating field, shown in model to be uniform and sub-threshold, significantly reduced the

bursting in tested networks. Furthermore, the capability of the cultured networks to display

characteristics of learning is explored. Administration of a high frequency training signal is

demonstrated to significantly increase the response of networks to a low frequency
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probing stimulation. This increased sensitivity is found 30-50 ms after stimulus suggesting

a potentiation of a post-synaptic mechanism.

The traditional analysis in the first part of this dissertation relies solely on measures

related to the recorded neuronal extracellular potential. However, to understand the full

dynamical evolution of a system it is often imperative to have estimates of the unmeasured

variables. The second part of this dissertation will demonstrate the development and use

of data assimilation techniques for the reconstruction of unmeasured neuronal network

dynamics. A statistical assimilation algorithm relying on nonlinear Kalman filtering is

implemented for the purposes of identifying and tracking neuronal network connectivity.

Once validated in model, this technique is used to find network connections in in vitro

network recordings. Additionally, a substantial extension of the assimilation methodology is

proposed to deal with the specific case of unmodeled variables, when training data from the

variable is available. This method uses a stack of several, nonidentical copies of a physical

model to jointly reconstruct the variable in question. This technique is implemented to

accurately recover unmodeled ionic concentration dynamics from synthetic seizure datasets.

The method is then used to reconstruct the extracellular potassium concentration in a

neuronal culture.



www.manaraa.com

Chapter 1: Introudction

Understanding the dynamics of the brain under normal and diseased states has been a

topic of great interest to researchers across a variety of disciplines. Neurons are the core

component of the brain, processing and transferring information between each other through

electrical and chemical network interactions. The networks in the brain consist of billions

of neurons leading to a problem that is both high in dimension and complexity. This can

make the elucidation of underlying mechanisms behind neuorological phenomenon, such as

epilepsy and spreading depression, difficult.

As a means of reducing the overall complexity of the problem, in vitro cultures can

be considered as an experimental model of the in vivo system. Microelectrode arrays in

particular have become a popular in vitro platform through which to probe the dynamics

of cultured neuronal networks [1]. Since the first recordings of single unit activity from

snail neurons by Gross and collaborators [2, 3], the technology and use of microelectrode

arrays to investigate different properties of neuronal networks has expanded significantly.

Their capability to record spontaneous activity of multiple neurons in a network have made

them ideal for application as a biosensor [4], for studies examining the effects of pharma-

cology and toxicology [5, 6] and for understanding the effects of electrical stimulation on

network behavior [7–14]. Their utility however is limited to measurements of the neuronal

extracellular potential, leaving all other dynamical variables as unobserved quantities.

Parallel to the growth of in vitro experimental models has been the development of

nonlinear mathematical models descrbing the dynamics of neurons. The most famous of

these is the Hodgkin-Huxley model [15]. The Hodgkin-Huxley equations describe the ini-

tiation and propagation of action potentials in a single neuron as a function of variables

representing the neuronal membrane potential, gating variable dynamics and bio-plausible

1
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parameter values. There have been several extensions of the Hodgkin-Huxley model, for

example in describing the dynamics of neuronal seizures [16].

While biophysically accurate, the Hodgkin-Huxley model is computationally demand-

ing particularly when considering a network-level implementation. In an effort to reduce

computational complexity, numerous reduced-order models have developed making network

analysis feasible. The Fitzhugh-Nagumo model [17,18] is one such model, serving as a direct

simplification of the Hodgkin-Huxley equations. Additional simple models have developed

including Wilson-Cowan [19], Hindmarsh-Rose [20] and Izhikevich model [21] to name a

few.

The rapid expansion of technology in the physical sciences, allowing for the collection

of large amounts of data, combined with the advancement of mathemical modelling has

led to a surge in the use of data-assisted modeling. Data-assisted modeling represents a

fusion of experimental study with traditional mathematical modeling. Data collected from

a physical system is fit to a mathematical model through a data assimilation algorithm

and unobserved variables are estimated. Its use has become standard in numerical weather

prediction [22–25], oceanography [26] and various areas of spatiotemporal dynamics [27–30].

In the seminal work by Ullah and Schiff [31], the assimilation framework was used for the

analysis of single-cell seizure recordings. Using a biophysically accurate seizure model, the

authors were able to assimilate the measured potential from an vitro neuronal cell in seizure

and reconstruct the neuron’s sodium and potassium concentration dynamics as well as cell-

specific parameter values. This was the first successful demonstration of the feasibility of

data assimilation analysis of neuronal data [31].

The goal of this dissertation is twofold. The first part will demonstrate the use of the

microelectrode array platform to investigate the effects of electrical stimulation on cortical

neuronal networks. Our motivation here is to examine how we can use stimulation to alter

the network firing dynamics of the cultured neurons. The analysis in this part will rely on

traditional metrics based on the recorded extracellular potential.

In Chapter 3, we examine the influence of sub-threshold electric fields on neuronal

2
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network activity. Endogenous fields found in the in vivo brain are low frequency and sub-

threshold electric fields hypothesized to play a significant role in guiding cortical activity

[12]. Using two silver/silver chloride electrodes we applied a low frequency stimulation

to the culture bath, resulting in a homogenous sub-threshold stimulating field that was

characteristically similar to in vivo endogenous fields. This stimulating field was found to

significantly reduce the network’s spontaneous bursting activity.

In Chapter 4 we assess the capability of cultured cortical networks to display character-

istics indicative of learning. Expanding on the work done in [32], we explored the effects of

a high frequency training signal on a network’s response to a low frequency probing stimula-

tion pulse. We found that administration of the training signal caused a significant increase

in the network response to the stimulation, particularly in the timeframe of 30-50 ms after

stimulation. These results suggest the potentiation of an early post-synaptic mechanism.

The second part of this dissertation focuses on the use of data assimilation for re-

constructing network dynamics from the microelectrode array networks. As previously

mentioned, while the array technology has been used in a wide variety of studies its mea-

surements are limited to the neuronal extracellular potential. However, to fully understand

the dynamical evolution of the system it’s important that we have estimates of the un-

observed system dynamics. Our focus here is the use of data assimilation techniques for

reconstructing unobserved variables in neuronal networks. Since our analysis is focused on

network data, a significant feature of this work will be the use of computationally simple

models to assimilate the network measurements and estimate complex features.

In Chapter 6 we address the issue of network connectivity. We develop a statistical

method for identifying and tracking network connectivity using a nonlinear data assimilation

technique and the recorded neuronal potential. We demonstrate that our method can

statistically identify the network connectivity and track any connection parameters that

may vary over time due to network nonstationarity. Once this technique is validated on

synthetic network data, it is implemented on recordings from spontaneously active in vitro

networks.

3
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In chapter 7 we develop a significant extension of the traditional data assimilation al-

gorithm for the reconstruction of “unmodeled variables”, or variables that do not appear

in the equations of the model. Using a stacked set of parameterically different assimilation

models, we demonstrate the ability of this technique to reconstruct complex ionic dynam-

ics from a seizure dataset. We then implement this approach for the reconstruction and

tracking of extracellular potassium concentration changes in an in vitro neuronal network.

4



www.manaraa.com

Chapter 2: In Vitro Cultures on Microelectrode Arrays

2.1 Cell Culturing on Microelectrode Arrays

Cortical and spinal cord neurons were extracted from embryonic day 17 (E17) mice removed

from a time-pregnant mouse. After enzymatic and mechanical dissociation, cells were plated

on 64-channel microelectrode arrays (MEA) at a density of approximately 150,000-200,000

cells per array. Figure 2.1 shows a schematic of the in vitro culture preparation, the details

of which can be found in [6]. Cultures were maintained in DMEM supplemented with

horse serum, fetal bovine serum, B-27, and ascorbic acid for the first two days. At day 3,

serum was removed and networks were maintained by a 50% media exchange twice a week.

Dishes are handled in a biological hood when necessary to maintain sterility and are checked

periodically under an inverted microscope for signs of contamination as well as homogeneous

array coverage. Arrays that showed contamination are washed and sterilized. Cultures were

incubated under controlled temperature, 37◦C, and humidity, 10% CO2. Figure 2.2 shows

an example of a cultured MEA network.

2.2 Extracellular Recordings

MEAs allow for the simultaneous recording of neuronal extracellular potential at each of

the array’s electrodes. MEAs were hooked up to a Multichannel Systems (MCS) record-

ing system (Reutlingen, Germany) and temperature was maintained at 35◦ C through a

temperature control box (TC02 Temperature Controller Multichannel Systems, Reutlin-

gen, Germany). Signals were acquired at a rate of 25 kHz and bandpass filtered from 300

Hz to 3 kHz. Figure 2.3 shows the filtered extracellular potential recorded at an MEA

electrode. To account for any transient behavior caused by the movement of the culture
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Figure 2.1: Generalized procedure for the preparation of in vitro arrays. Cortical and
spinal cord neuronal cells are extracted from the embryos of time-pregnant mice. After
the dissociation process, cells are plated onto MEAs at a density of approximately 150,000-
200,000 cells per array depending on tissue type.

and subsequent hook up to the system, an initial stabilization period was alloted for all

networks prior to recording or experimentation.

Data acquisition from the MEA comes in two forms: the raw time series of the extra-

cellular potential and the calculated spike times from each electrode. A “spike” is declared

when the extracellular potential crosses a pre-defined threshold. Thresholds for spike de-

tection were set individually for each electrode by the recording software (MC Rack) to

5 standard deviations of the base electrode noise level. This value for standard deviation

was determined to be optimal through numerous observations of MEA recordings in our

laboratory. After thresholding, a spike train for each electrode is produced.

The dissociated cultures are spontaneously active, with a typical active electrode from

a network displaying a spontaneous firing rate of approximately 10 Hz or around 600 spikes

per minute. Depending on the tissue type of the culture, activity patterns can vary greatly.

Figure 2.4 shows raster plot representation of the spontaneous activity from a representative

spinal cord (Figure 2.4a) and cortical (Figure 2.4b) network.

Due to the physical architecture of the array, it is possible for a single electrode site to
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Figure 2.2: In vitro neuronal network cultured on a microelectrode array (MEA). The MEA
is plated with E17 frontal cortex or spinal cord cells at a density of 150,000-200,000 cells
per array. Cultures are incubated at 37◦C with 10% CO2 and maintained by a 50% media
exchange twice a week between recording sessions or experimentation.

Figure 2.3: Extracellular time series recording from an active electrode from a cultured
network.

record signals from multiple neurons. This implies that each electrode can be considered as

a neuronal ensemble. However, post processing of the data allows for sorting of the signals

into distinct neuronal units. Figure 2.5 shows an example of a multiple unit recording from

a single electrode.

2.3 Optimal Timeframe for Network Recording and Experi-

mentation

The identification of the optimal developmental age for dissociated cultures in terms of net-

work activity and stability has been the topic of several studies, for example in Chiappalone
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(a)

(b)

Figure 2.4: Typical spontaneous activity from an in vitro (a) cortical network and (b) spinal
cord network. The patterns of activity between the two tissue types is vastly different.
Spinal cord networks display a more stochastic firing pattern whereas cortical network
activity appears to be driven by regular synchronized bursting events.

et. al [33]. They found that in their in vitro cortical cultures, the fourth and fifth weeks

of culture development were ideal from the standpoint of stable, robust network activity.

Given the procedural differences between individual labs, we tracked the development of

several cultures plated by our lab to determine the optimal experimental period for our

networks and see if our results matched those from the literature.

The network activity from 10 cultured MEA networks (5 cortical and 5 spinal cord)

was tracked over their respective days in vitro (DIV) development. In general during the

early stages of culture development (DIV 7-DIV 14), the networks are highly susceptible to

changes in CO2 resulting in a slow decline in spontaneous activity during prolonged periods
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Figure 2.5: Sorted neuronal waveforms recorded from a single electrode site. Distinct
difference in shape of waveforms suggests that each is representative of a different neuron.

outsides the incubator. As the cultures continue their development they become more

robust to environmental changes making extended recording sessions possible. Addiitonally

we observed a steady increase in the spontaneous network activity. Figure 2.6 shows the

average network activity of a representative cortical network as a function of its in vitro

developmental stage. Peak activity for this network (and in general all of our networks)

occurs in the DIV 21-28 range. Taking our observations from our networks and the results

from the literature into account, we targeted cultures aged DIV 28 or greater as the ideal

time point at which to do our recording and experimentation.
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Figure 2.6: Multiple recordings from a representative MEA network plated with cortical
neurons. At each DIV spontaneous activity was recorded from the network for 30 minutes.
Error bars represent standard error amongst active network channels.
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Chapter 3: Suppression of Neuronal Bursting through

Electrical Fields

The following chapter has been published here [34].

Stimulation of neuronal networks has proven to be effective in changing neuronal behav-

ior, such as bursting [7, 10, 11]. However, conducting neuronal stimulation through electric

fields would provide an environment more similar to naturally occurring endogenous fields

within the brain. These endogenous fields are low frequency and sub-threshold electric

fields hypothesized to play a significant role in guiding cortical activity [12]. It has been

demonstrated that the application of relatively low frequency (1-50 Hz) electric fields could

modulate neuronal activity while the stimulation was active, entraining neuronal firing to

the oscillations of the stimulating field. When the field was turned off, activity returned to

its non-entrained state [12–14,35].

In this chapter, we further explore the influence of electric fields on neuronal activity.

In vitro networks of cortical neurons plated on MEAs were stimulated with electric fields

through the arrays bath. This stimulation setup was chosen due to its robustness to various

experimental designs. Results from a finite element modeling simulation determined that the

stimulating field was sub-threshold and distributed homogenously throughout the network.

The electric fields generated were characteristically similar to endogenous fields in the brain,

oscillating at a low frequency and sub-threshold in strength. In particular, the effects on

network bursting were examined. Network burst parameters were calculated and used

to determine any influence of stimulation on the networks dynamics. Network activity

was examined up to half an hour after stimulation in order to ascertain whether or not a

persistent change occurred.

The percent change of burst parameters as compared to baseline values were calculated
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for all MEA networks. Results showed a statistically significant difference between stimu-

lated and control networks for the percent change in the number of bursts as well as interval

between bursts. This supports the notion that we were able to change the dynamical be-

havior of the network, essentially steering the network from a high frequency bursting state

to a low frequency bursting state.

3.1 Materials and Methods

In vitro cultures were prepared as described in Chapter 2. Our experimental protocol con-

sisted of three periods: baseline recording, treatment period and post-treatment recording.

A 30 minute baseline recording of spontaneous network activity was established. Networks

(n = 5) then underwent ten minutes of field stimulation. A continuous low frequency si-

nusoidal wave, 1 Hz and 1 V peak-to-peak (Vpp), was applied to the networks with an

Agilent 33220A function generator (Agilent, Santa Clara, CA) through two silver/silver

chloride (Ag/AgCl) electrodes placed into the media of the MEA well. Immediately after

the stimulation period, a 30 minute post-treatment recording of the networks spontaneous

activity was obtained to determine if a persistent change in the network behavior occurred.

Additional control networks (n = 4) went through the same protocol except that they did

not receive any electrical stimulations.

Burst analysis was conducted for each active electrode in a network. A burst can be

described as a sequence of action potentials whose interspike interval (ISI) is less than some

determined threshold. Burst definition was done as detailed in [36]. After examining the

distribution of the network logISI, a burst was characterized as at least five spikes with an

ISI of at most 100 ms. Once initiated, a burst terminated when an ISI greater than 100 ms

occurred.

To quantify a networks bursting behavior interburst interval (IBI), burst duration and

total number of bursts were calculated for each channel. Outliers were removed if they

were at least two standard deviations from the mean. Each channel was normalized to
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its network average during baseline. These normalized values were then averaged within

a network. Percent change from baseline was compared between stimulated networks and

control networks using a Wilcoxon rank-sum statistical test. This analysis was done for

each of the three burst measures.

To determine the strength of the stimulation that reached the neurons a 2-D finite

element model (COMSOL, Burlington, MA) was developed. The MEA well was modeled

as a rectangle (3 mm × 35 mm) which contained cell culture media with permittivity of 80

and conductivity of 1.38 S/m [37, 38]. Stimulating and reference electrodes were modeled

as two bars, 1 cm apart, each having 200 µm width and 2 mm height. Only 400 µm of the

electrodes were immersed in the cell culture media. The distance between electrode tips

and the center bottom of the well was 2590 µm. The conductivity and permittivity of the

electrodes were 6e7 S/m and 1, respectively. For sake of simplicity, the electric field was

calculated at the center bottom of the well where the neurons were persumably located.

3.2 Results

In the bath stimulation setup, the electric field can be calculated by the equation below:

E = −∇V

where E is the generated electric field and ∇V is the gradient of the potential [39]. This

differential equation was simulated as the governing physics in COMSOL given the described

model setup in the Methods section. The resulting electric field generated throughout the

MEA chamber when the stimulation was applied to the bath can be seen in Figure 2a.

While the field strength varies throughout, within a 100 µm radius of the center of the

array the electric field was homogeneous. This region of the MEA is where the neuronal

cells were plated. Restricting our attention to this 200 µm diameter, the generated field was

approximately 79.2 µV/µm (Fig. 2b), which implied that a typical 10 µm cell was exposed

to 0.792 mV. Such an external field was considered sub-threshold from the perspective of a
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Table 3.1:
Network No. Networks No. Bursts (%) IBI (%) Burst Duration (%)

Control 4 −17± 4% +15± 0.07% −3± 6%

Stimulated 5 −70± 10% +660± 244% −43± 15%

Summary of stimulation results. Reported values indicate average percentage change in
dynamical measure (number of bursts, IBI, burst duration) as compared to baseline. (-)
indicates a decreasing percentage and (+) indicates an increasing percentage. (*) indicates
a statistically significant difference (p < 0.05) between the percent change as compared to
baseline between stimulated networks and control networks. Statistical analysis showed sig-
nificance for the difference in percentage change of number of bursts and IBI. This suggests
that the applied field stimulation suppressed the spontaneous network bursting.

neuronal cell in the cortex, validating the stimulation setup.

The percent change in number of bursts, IBI and burst duration, as compared to baseline,

were calculated for stimulated and control networks. Stimulated cortical networks exhibited

a decrease in the number of spontaneous bursting events after stimulation as compared to

baseline. In contrast, control networks did not show any noticeable difference. Raster plots

showing this effect in a representative control and stimulated network can be seen in Fig.

3a and Fig. 3b respectively. The data showed that networks which received stimulation

significantly decreased the number of bursts compared to control networks Ws = -2.45,

p < 0.05. There was also a significant increase in IBI for stimulated networks compared

to controls Ws = -2.45, p < 0.05. However, there was no significant difference between

stimulated networks and controls for burst duration, Ws = -1.60. A detailed description of

these results is summarized in Table 1.

3.3 Discussion

By applying a sub-threshold electric field to several cortical networks in vitro we were able

to change the fundamental dynamics of the system. Specifically, the networks in a state of
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high frequency bursting were shifted to a state of low frequency bursting. Such a change

manifested itself in a decrease in number of bursts and an increase in the IBI. These changes

were observed after stimulation had ended, showing a persistent effect of the stimulation

on the network dynamics.

Using a stimulating electric field similar to biologically occurring endogenous fields would

be a natural way to alter the firing dynamics of neuronal networks. Besides the benefit of

having similar features to a biological phenomenon, the sub-threshold nature of the field

would ensure that there are no adverse effects from the stimulation process. The COMSOL

simulation confirmed that the area over the recording grid where neurons can be found

was exposed to a sub-threshold electric field. This suggests that the observed decrease in

spontaneous network bursting was the result of an actual change in the network dynamics

caused by exposure to the electric field rather than the result of a stimulation-induced

excitotoxicity.

3.4 Conclusion

We have demonstrated that sub-threshold electric field stimulation can be used to change the

dynamical behavior of neuronal networks. Networks of cortical neurons cultured on MEAs in

vitro were administered a 1 Hz 1 Vpp stimulation through the bath. The resulting electric

field generated throughout the network was modeled by COMSOL, and this simulation

verified that neurons in the network were exposed to a sub-threshold field. This stimulating

field was shown to have a large impact on the dynamics of the neurons. Our results suggest

a significant difference in percent change from baseline between stimulated networks and

control networks for number of bursts and IBI. Specifically, the stimulating field showed the

ability to suppress the spontaneous bursting of networks.
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(a)

(b)

Figure 3.1: (a) Results of the COMSOL simulation of the electric field distribution through-
out the MEA when the sinusoidal stimulation (1 Hz and 1 Vpp) was applied to the MEA
bath through the Ag/AgCl electrodes. (b) Zoomed in results of the electric field over a
200 m length at the bottom center of the dish (denoted as 0) where the neuronal cells are
plated.The resulting field generated in this region is approximately 79.3 µV/m. This implies
that each 10 m cell is exposed to around 0.793 mV, validating the sub-threshold nature of
the stimulating field.
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(a) (b)

Figure 3.2: (a) Raster plots displaying 50 seconds of spontaneous network activity from
three active channels of a representative control network. Baseline activity (top) and post-
treatment activity (bottom) after ten minutes of no stimulation. There were no visibly
noticeable differences between these two periods. (b) Raster plots displaying 50 seconds
of spontaneous network activity from three active channels of a representative stimulated
network. Baseline activity (top) and post-treatment activity (bottom) after ten minutes
of electric field stimulation. There was a noticeable suppression of network bursting after
exposure to the sub-threshold field.
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Chapter 4: Neuronal Training through Electrical Stimulation

The capability of in vitro cultures to display characteristics of learning would represent a

significant development in the study development of memory. The use of electrical stim-

ulation patterns to induce learning in neuronal cultures has been a topic of great interest

in numerous studies, see for example [33, 40–45]. In Ruaro et al [32] it was suggested that

cultured networks could be utilized as a tool for image processing based on their ability to

discriminate between different configurations of stimulation electrodes representing spatial

patterns. It was shown that network wide response to a spatial pattern in hippocampal cul-

tures was significantly enhanced after a tetanization period suggesting successful induction

of learning.

Our goal in this chapter is to expand on several of the findings in [32]. Here we in-

vestigated the effects of a high frequency training signal in networks of cortical neurons.

Network response to a probing stimulation pulse was monitored before and after adminis-

tration of the training signal. Results indicated an increase in network sensitivity to the

probing stimulus after delivery of the training signal. This sensitivity manifested itself as

an increase in network firing frequency and firing reliability immediately after the stimulus.

This increase was found to be statistically significant in the time window of 30-50 ms after

stimulation, suggesting potentiation of a post-synaptic mechanism.

4.1 Materials and Methods

4.1.1 Cell Culturing

Networks of cortical neurons were prepared on MEAs as described in Chapter 2.
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Figure 4.1: Parameters for probing stimulation and training signal. (a) Probing stimulation
consisted of ± 900 mV bi-phasic pulses administered at a frequency of 0.5 Hz. Each phase
lasted 100 µs for total pulse length of 200 µs. (b) Pulse trains consisted of 100, ± 900 mV
bi-phasic pulses with frequency 250 Hz. (c) The training signal consisted of 40 total pulse
trains administered at a frequency of 0.5 Hz.

4.1.2 Extracellular Recordings

Offline spike sorting was conducted prior to analysis to separate stimulation artifacts from

neuronal signals at each electrode. Sorting was done using principle component analysis

and a k-means algorithm. Identified biological signals were clustered together creating a

neural assembly, or population response, at each electrode.

4.1.3 Stimulation

Electrical stimulation was applied to the culture through the electrodes using the commer-

cially available stimulus generator STG 4002 (Multichannel Systems, Reutlingen, Germany).
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Stimulating electrodes were not used for recording and therefore excluded from analysis.

Thirteen electrode stimulation sites were selected in an “L” shape configuration, consisting

of two perpendicular rows of electrodes meeting at a point. Parameters for both the probing

stimulation and the training signal described below were defined as in [32].

Networks were administered five minutes of a probing stimulation (pre-training) through

the selected stimulation sites. Probing stimulation consisted of a 0.5 Hz biphasic pulse, 200

µs pulse duration with 900 mV pulse amplitude. Figure 4.2a shows the parameters of the

low frequency probing stimulation pulse.

After the pre-training stimulation phase, networks underwent a training procedure. The

training signal was administered through the same electrodes as the probing stimulation.

This high frequency signal (see Figure 4.2b-c) consisted of a 0.5 Hz pulse train with 40 total

trains. Each train consisted of 100 biphasic pulses with 200 µs pulse duration, 900 mV

pulse amplitude and 4 ms interpulse interval. Networks from n = 12 experiments received

the training signal.

Once training was complete, five minutes of the probing stimulation (post-training) was

re-administered to the networks.

A separate group of networks were treated as controls to control for possible changes

in network response as a result of natural fluctuations or system nonstationarity. These

networks underwent the same experimental protocol described above, with the exception

that they received a sham training period and did not receive any training signal. Networks

from n = 10 experiments received the sham training and were kept as controls.

4.1.4 Data Analysis

We examined the peristimulus time histogram (PSTH) for control and trained networks

before and after the training period. Network activity was examined up to 50 ms after

stimulus in 10 ms bins. The spike frequency in each bin was calculated individually for all

active electrodes and averaged to give a network frequency per bin. In addition to spike

frequency, spike reliability was calculated and averaged across all active electrodes to give
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a network spike reliability per bin. Spike reliability can be interpreted as the probability of

seeing a network response to the stimulation, where a maximum value of 1 indicates that

there was a response to every stimulus pulse. All analysis was done using code developed

in MATLABTM (MathWorks, Natick, MA).

To account for the variability amongst networks within a group, each network’s post-

training reliability and frequency were normalized with respect to their pre-training values.

Any normalized value greater than 1 indicated an increase from pre to post-training and

values less than 1 indicated a decrease. For example, we expected control networks to have

normalized spike frequency and reliability values around 1 since they did not receive any

training.

Statistical analysis between control and trained networks was carried out using a re-

peated measures one-way ANOVA with training (trained or control) as a between subject

factor and time after stimulus (10-50 ms) as a within subject factor using SPSS (IBM,

Armonk, NY). The Mauchly’s test was carried out to determine if sphericity was violated.

A Greenhouse-Geisser correction was used if sphericity was violated and significance was

determined as p < 0.05. If a statistically significant interaction was found, a Tukey’s post

hoc analysis was run. All reported values are mean ± SEM.

4.2 Results

Figure 4.2 shows the activity response of eight active electrodes from a representative net-

work that received training. The vertical red line indicates the time of a single stimulus

pulse and the black lines denote neuronal activity in response to the stimulus. Figure 4.2a

shows the network response pre-training and Figure 4.2b shows the response post-training.

Pre-training the network exhibited an immediate response across channels to the stimula-

tion within the first 20 ms after stimulus. However, the amount of activity after this initial

response was inconsistent. Post-training, we observed a noticeable change in the network

response. While the network still displayed the immediate response to the stimulus pulse

within the first 10-20 ms, it also displayed a significant amount of activity 30-50 ms after
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Figure 4.2: Activity response of eight active electrodes from a representative MEA network
to a single stimulus pulse. Vertical red line indicates the time of the stimulus pulse and black
lines denote neuronal spiking activity. Pre-training (a), we observe an immediate response
across channels to the stimulus pulse. Post-training (b) we still witness this immediate
response to the stimulation, however we also observe a more prolonged activity response.

stimulus.

Figure 4.3 shows the overall effect over the first 50 ms after stimulation between net-

works that received training compared to networks kept as controls for both normalized

spike frequency and normalized reliability. (*) denotes statistical significance of p < 0.05.

Analysis revealed that there was a statistically significant overall difference in spike fre-

quency between trained networks and control networks (F (1, 1.838) = 6.923, p < 0.05).

Specifically, the mean normalized spike rate for trained networks was 1.377 ± 0.090 and

for control networks it was 1.024 ± 0.099. This meant that post-training, networks that

received the training signal responded to the probing stimulus with 37% more activity than
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Figure 4.3: Mean normalized spike freqeuncy and spike reliability for networks that received
training (n = 12) and networks that were kept as controls (n = 10). (*) denotes statistical
significance p < 0.05. Statistical analysis indicated a statistically significant overall differ-
ence in spike frequency between trained groups when compared to control groups. There
was no statistically significant overall difference in spike reliability.

they did pre-training. As expected, the response of control networks post-training did not

differ greatly from their response pre-training. There was no statistically significant overall

difference in spike reliability between the two groups.

Further analysis indicated a statistically significant interaction between spike frequency

and time after stimulus(F (1, 1.838) = 4.290, p < 0.05) and between spike reliability and time

after stimulus (F (1, 1.768) = 3.611, p < 0.05). Figure 4.4 shows the normalized frequency

and reliability of control and trained networks as a function of time after stimulus. A Tukey

post-hoc analysis was run to determine the points of statistical significance. This post-hoc

analysis indicated a statistically significant difference between spike frequency of control

and trained networks at time bins 20-30 ms (p < 0.01), 30-40 ms (p < 0.01) and 40-50

ms (p < 0.01) after stimulus. Reliability between control and trained networks was also

statistically different at time bins 20-30 ms (p < 0.05), 30-40 ms (p < 0.01) and 40-50 ms

(p < 0.01).
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There was approximately a 50% increase in spike frequency, as well as a 30-50% increase

in spike reliability for trained networks in the range of 20-50 ms after stimulus. This large

increase in network response in addition to the delayed effect suggests that the training

fundamentally changed the network dynamics.

4.3 Discussion

The response of cultured networks to electrical stimulation can be broken down into mul-

tiple phases, allowing for a more thorough analysis of the changes in network response

dynamics. The first phase is an early response of network activity within the first 20 ms

after stimulus that is directly caused by the stimulation [7, 8, 46–49]. This direct response

to the stimulation is driven electrically and not synaptically [46,49] and is likely the result

of electrical excitation of nearby axons [7, 8]. The second phase of the network response to

stimulation is characterized by a burst of activity throughout the network, peaking between

20-200 ms after stimulation [46–49]. This activity propagation throughout the network after

the immediate direct response relies on synaptic transmission [49].

Our results indicated that networks receiving the high frequency training signal devel-

oped a stronger response to the low frequency probing stimulation. This increased response

was overall statistically significant as compared to control networks which received no train-

ing. Additionally, a statistically significant interaction effect was found between time after

stimulus and whether or not a network received training. Follow-up post-hoc analysis indi-

cated that networks receiving the training signal exhibited a statistically significant increase

in spike frequency and spike reliability in the range of 20-50 ms after stimulation as com-

pared to controls. This time window corresponds with the network response dynamics that

are driven synaptically. This observed increase would therefore suggest that the effect of

the training signal could be potentiation with a mechanism that is likely post-synaptic.

The lack of a statistically significant difference between control and trained networks up to

20 ms after stimulus further reinforced the idea of synpatic potentiation, as the network

response during this time is driven directly by the electrical stimulation and not by synaptic
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mechanisms.

Our findings were somewhat consistent with those of [32] where the authors noted an

overall increase in network response to a probing stimulation after the training period.

However, the authors made no mention of any time-dependent effects like the ones observed

in our study. The discrepancy in the results could be attributed to the functional difference

in the cortical networks used here and the hippocampal networks used in [32].

4.4 Conclusion

We investigated the effects of a high frequency training signal on the response of cortical

networks to a probing stimulation pulse. Results indicated that after receiving the training

signal, networks responded with a statistically significant increase in spike frequency and

spike reliability. The increase was found to be time-dependent, specifically in the time

window of 30-50 ms after a stimulus pulse suggesting potentiation with a mechanism that

is possibly post-synaptic.
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Figure 4.4: A statistically significant interaction between time after stimulus and training
was found for both (a) spike reliability and (b) spike frequency (p < 0.05). A Tukey post-hoc
analysis was run to determine the points of statistical significance. (**) denotes p < 0.01
significance and (*) denotes p < 0.05 significance. Post-hoc analysis showed that there
was a statistically significant difference in normalized spike frequency and normalized spike
reliability at time bins 20-30 ms, 30-40 ms and 40-50 ms after stimulus between trained and
control networks.
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Chapter 5: Data Assimilation for State and Parameter

Estimation

5.1 The Mathematical Inverse Problem

In the study of physical systems we are often restricted by a limitation in our observations.

What this means is that we are only able to measure a subset of variables from the system,

leaving all others as unmeasured quantities. While the collected data are valuable, they

give us an incomplete picture when trying to understand the full dynamical evolution of

the system. The question is what additional information can we learn about the system

given the collected data? This resulting mathematical inverse problem plays a crucial role

in understanding the system dynamics.

We assume observation of a physical system in the time interval [t1, tk] during which

time we collect noisy measurements y = [y1, y2, . . . , yk] from a measurable dynamic of the

system. Our goal is to estimate and track the unmeasurable quantities of the physical

system using a mathematical model.

Assume we have a parametrized n dimensional system of ordinary differential equations

(ODEs) modelling the physical system

ẋ1 = f1(x1, x2, . . . , xn, p1, . . . , pm)

ẋ2 = f2(x1, x2, . . . , xn, p1, . . . , pm)

... (5.1)

ẋn = fn(x1, x2, . . . , xn, p1, . . . , pm)
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For notation purpose, we can rewrite (5.1) in vector form

ẋ = f(x, p, t) + w (5.2)

f represents the dynamics of the model, x is an n-dimensional vector of state variables,

p is a m-dimensional vector of parameters and w is a Gaussian noise term known as the

dynamical noise. Dynamical noise can be thought of as the error between the equations of

the model and the dynamics of the actual physical system. Some of the model parameters

may be calculated through first principles or known from the literature, but frequently they

are unknown quantities to be estimated.

We define a measurement or observation function h that maps x and p to a predicted

measurement ŷ

ŷ = h(x, p, t) + v (5.3)

where v is a Gaussian noise term known as the observational noise. The observational noise

can be thought of as the error in the measurements introduced by sensor inaccuracy. We can

also think of (5.1) and (5.3) as discrete-time processes which will help later in formulating

the estimation algorithms

xk+1 = f(xk, p, tk) + wk (5.4)

ŷk = h(xk, p, tk) + vk

The idea behind the mathematical inverse problem is to find estimates for the state

variables x̂ and parameters p̂ such that the predicted model observation ŷ matches the

measurements y as close as possible. In other words, we would like to minimize the residual

r = y − ŷ = [r1, r2, . . . , rk]. There are two approaches to minimizing r leading to two

general class of estimators: non-sequential and sequential estimation methods. In non-

sequential estimation r is minimized at once. A popular non-sequential estimator is the
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family of shooting methods, details of which can be found in [50–52]. On the other hand

with sequential estimation each ri is minimized individually. While there are advantages

and disadvantages for both estimation approaches, the focus of this dissertation will be on

use of sequential estimation in data-assisted modeling.

5.2 The Kalman Filter

Data assimilation is the process whereby easily measured, and often noisy, data are incor-

porated into a mathematical model of the system using a sequential estimation algorithm,

such as the Kalman filter. The Kalman filter [53] employs a predictor-corrector methodol-

ogy for state estimation. At time k − 1 the filter makes a prediction, or a priori estimate,

of the system’s state and covariance at time k. After we take a measurement of the system

at time k, the filter corrects the prediction making an a posteriori estimate of the state and

covariance at time k. The basic idea of the Kalman filter is shown schematically in Figure

5.1.

Figure 5.1: Schematic of the Kalman filter.

The underlying assumption of the Kalman filter is that the model represeting the phys-

ical system is linear. Specifically in (5.4) f and h are assumed to be linear transformations.
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With that in mind, we assume the following linear discrete-time system

xk = Fk−1xk−1 + wk−1

yk = Hkxk + vk

wk ∼ (0, Qk)

vk ∼ (0, Rk)

The Kalman filter equations are defined as follows

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1

Kk = P+
k H

T
k R
−1
k

x̂−k = Fk−1x̂
+
k−1

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

P+
k = (I −KkHk)P

−
k

where x̂−k and P−k are the estimates of the state and covariance prior to processing the

measurement at time k and x̂+
k and P+

k are the state and covariance estimates after pro-

cessing the measurement at time k. Alternative forms of the Kalman filter equations can be

derived for purposes of stability as well as ease of implementation. See Appendix A.1 for a

useful derivation of an alternative form that will be helpful later when discussing nonlinear

filtering techniques.

5.3 Nonlinear Filtering: The Ensemble Kalman Filter

Unfortunately the majority of physical systems, as well as the models representing them,

are nonlinear meaning that outright application of the Kalman filter equations would lead

to large errors in the estimates. In dealing with these systems, the goal is to find a way
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to approximate the nonlinear system first before application of the linear Kalman filter

equations. Advancements in nonlinear analysis and techniques have led to two prominent

nonlinear Kalman filters in the literature: the extended Kalman filter and the ensemble

Kalman filter. In the extended Kalman filter (EKF), the approximation of the nonlinear

system is done through linearization. Rather than linearization, the ensemble Kalman filter

(EnKF) [22] approximates the nonlinear system using a finite weighted ensemble whose

mean and covariance preserve those of the system. The ensemble approach offers computa-

tional advantages (linearization at each filter step is computationally demanding) as well as

higher order accuracy in its approximations, making it our method of choice. For a detailed

discussion of the accuracy of both the linearization and ensemble approach, see Appendix

A.2.

There are different approaches to selecting the ensemble, but the unscented transfor-

mation gives us a natural way to do so in the form of the defined sigma points. For an n

dimensional nonlinear system, 2n sigma points sigma points are chosen though more can

be defined so as to include higher order information about the sytem. Here, we restrict

ourselves to 2n + 1 weighted sigma points where the additional sigma point is the current

mean of the system. The ensemble is weighted such that

2n∑
i=0

W (i) = 1

We assume the discrete time system shown in (5.4)

xk+1 = f(xk, tk, p) + wk

yk = h(xk, tk, p) + vk

wk ∼ (0, Q)

vk ∼ (0, R)
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where w and v are Gaussian noise terms with variances Q and R respectively and p is an

m-dimensional vector of system parameters.

We initialize the filter with state vector x̂+
0 and covariance matrix P̂+

0 . Without loss of

generality we set

x̂+
0 = 0n×1

P̂+
0 = In×n

where 0n×1 is an n vector of zeros and In×n is the n× n identity matrix. Using the theory

behind the unscented transformation [54–56], we define 2n+1 ensemble members such that

x̂0
k−1 = x̂+

k−1

x̂ik−1 = x̂+
k−1 + x̃i i = 1, . . . , 2n

x̃i =

(√
nP+

x (k − 1)

)T
i

i = 1, . . . , n

x̃n+i = −
(√

nP+
x (k − 1)

)T
i

i = 1, . . . , n

where the square root shown above is the matrix square root that can be calculated calcu-

lated for example with the singular value decomposition (SVD) or Cholesky factorization.

We apply the dynamics f to the ensemble to move them forward in time from k − 1 to

k

x̂
(i)
k = f

(
x̂ik−1, tk−1, p

)
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and from this calculate the a priori, or background, state at time k

x̂−k =

2n∑
i=0

W (i)x̂ik

and the associated a priori, or background, covariance

P−k =
2n∑
i=0

W i
(
x̂ik − x̂−k

) (
x̂ik − x̂−k

)T
+Q

To each ensemble member at time k we apply the observation function

ŷik = h
(
x̂ik, tk, p

)
and find the measurement predicted by our nonlinear model

ŷk =
2n∑
i=0

W iŷik

This allows us to construct the measurement covariance

P yk =

2n∑
i=0

W i
(
ŷik − ŷk

) (
ŷik − ŷk

)T
+R

and the cross-covariance

P xyk =

2n∑
i=0

W i
(
x̂ik − x̂−k

) (
ŷik − ŷk

)T

We can now update our state and covariance estimates using the observation yk and the
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Kalman update given by

Kk = P xyk (P yk )−1

P+
k = P−k − P

xy
k (P yk )−1P yxk

x+
k = x−k +Kk

(
yk − y−k

)
.

5.4 Ensemble Kalman Filtering for State and Parameter Es-

timation

Thus far, the state estimation problem has been addressed specifically. However, in a typical

data assimilation problem unknown model parameters need to be estimated in addition to

the unknown state variables. This dual estimation problem [50,57–59] can be addressed in

a straightforward manner by extending the EnKF methodology.

To estimate the parameters along with the states of our model, we consider the state

augmentation approach as discussed in [31, 50, 60–62]. With this method, we treat the m

dimensional parameter vector p as extra states of the model that have trivial dynamics

ṗ =



ṗ1

ṗ2

...

ṗm


=



0

0

...

0



This allows us to form an augmented state vector consisting of the original n model states
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and m parameters

x̂ =



x1

x2

...

xn

p1

p2

...

pm



allowing for simultaneous state and parameter estimation

We demonstrate this dual estimation scheme in two example systems. Consider the

Lorenz-63 system [63] perturbed by dynamical noise

ẋη = σ(xη − yη) + ηẆx

ẏη = xη(ρ− zη)− yη + ηẆy (5.5)

żη = xηyη − βzη + ηẆz

where σ = 10, ρ = 28 and β = 8
3 . Ẇ represents uncorrelated white noise of unit variance

and η represents the level of dynamical noise. For this example, we set η = 1. This system

is simulated using a fourth-order Runge-Kutta with integration step-size h = 0.05 and our

observation is limited to the xη variable at sample rate dt = 0.05.

The goal of this state and parameter estimation problem is given observations of xη,

estimate the yη and zη state variables as well as the σ, ρ and β parameter values. We
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provide the EnKF with the following assimilation model

ẋ = σ(x− y)

ẏ = x(ρ− z)− y (5.6)

ż = xy − βz

and assume an observation function h(x, y, z) = x. Note the discrepancy in the observed

physical system (5.5) and the model chosen for the filter (5.6). Since we are interested in

the dual estimation problem, we can rewrite the filter model as

ẋ = σ(x− y)

ẏ = x(ρ− z)− y

ż = xy − βz

σ̇ = 0

ρ̇ = 0

β̇ = 0

In this augmented form, the EnKF is able to simultaneously estimate the state variables

and parameters of (5.6).

The initialization of state and parameter values in the EnKF requires some discussion.

In general initialization needs to be within a neighborhood of the correct values, meaning

if you start too far away from the truth than the result can be convergence to incorrect

estimates or filter divergence. The size of this neighborhood though is influenced by several

factors including, amount of noise as well as the overall system dynamics (some systems are

more sensitive to initialization than others, notably chaotic systems). Therefore the results

of the estimation, including convergence time and the final estimated values, are dependent

on several factors.
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Figure 5.2 shows the results of the state and parameter estimation of the system de-

scribed in (5.5) with filter initialization



x0

y0

z0

σ0

ρ0

β0


=



0

0

0

3

8

1



The estimated state variables in Figure 5.2a (color traces) do a good job of tracking the

true system trajectories (black curves). However, there is notable error in the estimate of

the z trajectory. This error can be explained by Figure 5.2b which shows the estimated

parameter values (color traces) and the true parameter values (dotted black lines). There is

a level of error in the parameter estimates, particularly for the ρ and β parameter values. Of

note, the estimated parameter values converged, they just converged to slightly inaccurate

values. This likely was a contributing factor to the error in the state variable estimates.

We now consider a second demonstrative example, the Hindmarsh-Rose system [20]

influenced by dynamical noise

ẋη = yη − ax3
η + bx2

η − zη + I + ηẆx

ẏη = 1− dx2
η − yη + ηẆy (5.7)

żη = 0.005

[
4

(
xη −

(
−8

5

))
− zη

]
+ ηẆz

where a = 1, b = 3, d = 5 and I = 3.25 (see [20] for different parameter values that generate

various system behaviors). Ẇ represents uncorrelated white noise of unit variance and η

represents the level of dynamical noise. For this example, we set η = 0.1. This system is
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simulated using a fourth-order Runge-Kutta with integration step-size h = 0.05 and our

observation is limited to the xη variable at sample rate dt = 0.05.

Much like in the previous Lorenz-63 example, given observations of xη our goal is to

estimate state variables yη and zη and parameters a, b, and d (note: we assume that we have

knowledge of the correct value for parameter I). We provide the EnKF with the following

assimilation model

ẋ = y − ax3 + bx2 − z + 3.25

ẏ = 1− dx2 − y (5.8)

ż = 0.005

[
4

(
x−

(
−8

5

))
− z
]

with observation function h(x, y, z) = x. We re-formulate (5.8) for the dual estimation

problem

ẋ = y − ax3 + bx2 − z + 3.25

ẏ = 1− dx2 − y

ż = 0.005

[
4

(
x−

(
−8

5

))
− z
]

ȧ = 0

ḃ = 0

ḋ = 0

Figure 5.3 shows the results of the state and parameter estimation of the system described
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in (5.7) with filter initialization



x0

y0

z0

a0

b0

d0


=



0

0

0

0

0

0



Figure 5.3a shows the results of the state variable estimation (color traces) compared

to the true trajectories of the variables (black traces). Figure 5.3b shows the results of the

parameter estimation (color traces) compared to the true parameter values (dotted black

lines). We are able to estimate the general dynamics of the state variables as well as obtain

fairly accurate parameter estimates, however there is some error in the estimation much

like in the Lorenz-63 example.

Both examples show the capability of the EnKF to perform the simultaneous dual

estimation of states and parameters. However, in both examples there were errors in the

estimates. This shows that the state and parameter estimation problem, even in the case

of a fairly well-known system, is far from trivial.

Of note, the results presented here are a reflection of the noise level η and the filter

initialization used. As these change, one can expect slight variations in the results. For

example, as η increases the estimation problem becomes much more difficult since the as-

sumed assimilation model has a larger degree of model error. Also, if the filter initialization

is done too far from the true system values then one could expect incorrect convergence or

filter divergence.
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(a)

(b)

Figure 5.2: Results of EnKF estimation of (a) state variables and (b) parameters in the
Lorenz system described by (5.5). (a) Black lines represent true trajectory of the sys-
tem variables and colored lines denote filter estimate. (b) Dotted black lines denote true
parameter values and colored lines denote filter estimate.
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(a)

(b)

Figure 5.3: Results of EnKF estimation of (a) state variables and (b) parameters in the
Hindmarsh-Rose system described by (5.7). (a) Black lines represent true trajectory of the
system variables and colored lines denote filter estimate. (b) Dotted black lines denote true
parameter values and colored lines denote filter estimate.
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Chapter 6: Real-time Tracking of Neuronal Network

Structure using Data Assimilation

The following chapter has been published here [62].

A dynamic of particular interest in neuronal networks is the connectivity structure. Con-

nectivity changes as a function of network development and in response to applied electrical

or pharmacological stimuli. Tracking these changes is essential for understanding the un-

derlying dynamical evolution of the network, and serves as a valuable tool for experimental

interventions.

A method for tracking connectivity should ideally meet several criteria. First, it should

be statistical in nature. A strictly statistically-based method will require only a pre-

determined confidence level, removing the need to provide an arbitrary decision threshold

or decide how to make conclusions from a ROC curve. Second, the method should be robust

to error. We are typically interested in error caused by system noise, and error caused by

a mismatch in dynamics between acquired data and the model used to represent the data.

Third, the method should have sequential, or real-time, implementation capability. Real-

time analysis of a network’s structure is particularly important in experimental scenarios

where feedback is critical for determining or controlling the direction of the experiment.

This article describes a new method for tracking connectivity in neuronal networks that

meets these three criteria.

Methods for detecting network links from complex time series have been the focus of

several recent studies. The analysis of interactions between nonlinear processes was pursued

in [64, 65], and ideas from compressed sensing were introduced in [66]. The concept of

Granger causality [67] has been exploited by calculating partial directed coherence in [68].

Parallel to these developments are a wide range of connectivity methods for spike train

measurements. Higher moment methods such as coherence, joint densities and cumulant
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spectra were pursued in [69–71]. An information theory approach was proposed in [72].

Maximum likelihood methods for spike train neuronal interaction were investigated in [73–

76]. These methods do not meet the first criteria of being statistically based.

The Cox method, introduced for neural networks in [77] and refined in [78], was the

first statistical test for connectivity in networks analyzed by spike trains. The method

was expanded in [79] to include a test for changes in connectivity. While the Cox method

satisfies the first two criteria of being statistical and robust to error, it fails to meet the

third. Data requirements were found in [79] to be at least 103 spikes per node, and prior to

the conclusion of processing, the method provides no estimate of the network connectivity

structure. Furthermore, if new data is acquired then the entire data set must be re-processed

before it can be included in the estimate, making use of the Cox method more suitable for

offline analysis.

In the following chapter we use of a parameter-augmented version of the EnKF to

estimate connection strengths of a network of cultured neurons sampled by an MEA. The

Kalman filter [53] is a natural choice for this problem, because in addition to estimating the

connection parameters it will estimate their uncertainties, which will allow a statistical test

for connectivity on acquired time series to be developed. We will show that the method

exhibits a robustness to error much like the Cox method, but offers a significant advantage

in terms of application for real-time analysis. We begin by demonstrating the results of a

feasibility study of the method applied to synthetic data where there is significant model

error, followed by application to the in vitro neural culture network.
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(a) (b)

Figure 6.1: (a) Small section of recorded extracellular potential in vitro (five traces shown).
Sample neural spike waveforms from the MEA differ in shape from generic neuron models,
which simulate intracellular currents. (b) Three assimilation results for top trace in (a).
Observation (black) consists of preprocessed (see text) extracellular waveform compared
with its intracellular model counterpart. When no parameters of the model are fit (marked
None, light grey) the observation cannot track successfully. By fitting individual neuron
parameters (marked Neuron, medium grey) more of the observation is tracked. When the
full network parameters are fit in addition to the neuron parameters (marked Network, dark
grey), the observation is fairly effectively tracked, showing the importance of including the
network structure in assimilation.

6.1 Nonlinear Data Assimilation for Link Tracking

For assimilation purposes, we posit a general nonlinear system with an n-dimensional state

vector x and m-dimensional observation vector y evolving according to

xk+1 = f(xk, tk) + wk

yk = h(xk, tk) + vk (6.1)

where wk and vk are Gaussian noise terms with covariance matrices Q and R respectively.

For our purposes, f in (6.1) is chosen to be a generic spiking model. We used the
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Hindmarsh-Rose intracellular model [20] parametrized as in [80]:

V̇i = aiV
2
i − V 3

i − yi − zi + Ii +
n∑
j 6=i

ΓHR(Vj)Vj + σẆV i

ẏi = (ai + αi)V
2
i − yi + σẆyi (6.2)

żi = µi(biVi + ci − zi) + σẆzi

for i = 1 . . . n, and where ΓHR(Vj) = βij/(1 + 9e−10Vj ) is a gating function that regulates the

amount of input between neurons. Here V is the membrane variable, y (resp., z) represents

the fast (resp., slow) channel dynamics, I is the input current and a, b, c, α, µ are model

parameters whose values determine the different spiking behaviors of the neuron such as

tonic spiking or bursting. The parameters βij represent the connectivity parameter from

neural assembly j to neural assembly i, and Ẇ represents uncorrelated white noise of unit

variance. The only observable used by the data assimilation procedure is the membrane

voltage h(V, y, z) = V .

The choice of gating function ΓHR(Vj) is used to force the model parameters to be fit

from the spiking dynamics of the measured data, in addition to physiological plausibility.

This is based on a hypothesis that information is passed in a neural network primarily

through spiking behavior, and we strive to avoid spurious fitting of model parameters from

arbitrary resting potentials between spikes. We found through computer experiments with

synthetic data that in the absence of a gating function the model parameters are easily fit

from resting data, which overemphasizes the confidence in parameter fitting.

As discussed in Chapter 5, we can treat the l-dimensional parameter vector p as extra

states of the model, with trivial dynamics. The augmented state vector, consisting of the

original n model states and l parameters, is estimated by the EnKF. Fig. 1(b) compares

the reconstruction of the observable by the EnKF in three scenarios: with (1) fitting only

the n state variables (no parameters), (2) the state variables plus model parameters αi, ai,
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and Ii, and (3) the state, model and network parameters βij .

The extracellular waveform shown in Fig. 1 was recorded from a network of cultured

mammalian spinal cord neurons plated onto an MEA as described in Chapter 2. Fig. 1(a)

shows several time traces of the recorded potential at separate electrodes.

Since the recorded extracellular potential waveform differs from the Hindmarsh-Rose

waveform, preprocessing is required. We connected the recorded potential to its intracellular

counterpart through the relationship dI/dt ≈ E where E is the recorded extracellular

potential and I is the intracellular potential [81]. The integration required was done using a

simple moving average algorithm. The resulting approximation was then scaled as necessary

to ensure stability when assimilated to our general model.

The design of the MEA allows for the possibility of multiple unit recordings at each

electrode, although in the case reported here, offline analysis of the active electrodes showed

single unit activity at each electrode. In a real-time analysis of network structure, sorting

of individual units may not be feasible. Each electrode can thus be considered as a neural

assembly, or population response, and subsequently be modeled as such. On the other

hand, if analysis is to be done offline then units can be distinguished, for example, through

principal component analysis (PCA) and use of a clustering algorithm.

The Hindmarsh-Rose equations were chosen for this problem since they can represent a

significant range of neuronal behavior with only three dynamical variables. To resolve the

possible error in estimated connectivity caused by unmodeled neuronal dynamics, some of

the model parameters are left as free states to be estimated along with the model variables

and connection parameters. These additional parameters give the EnKF extra degrees of

freedom to resolve the model error and aid in the assimilation process. While there are more

biophysically accurate models in the literature, the consequence of using these models is a

more demanding estimation problem caused by the increase in variables and parameters.

Our interest is in having a faithful representation of network connectivity, making this

additional complexity unnecessary.
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(a) (b)

Figure 6.2: Specificity (dotted line) and sensitivity (solid line) results of our method’s
identification of network links at the 95% confidence level when model error caused by
noise is considered. Networks consist of (a) 10 Hindmarsh-Rose neurons (b) 5 Hodgkin-
Huxley neurons with 40% network connectivity. In both cases, Hindmarsh-Rose was the
EnKF network model. Error bars represent standard error over 10 network realizations of
length 8 sec. Identified links are those whose estimated β connectivity parameter is greater
than two times their filter-estimated standard deviation.

6.2 Statistical Identification of Network Links

The connectivity strength between neural assemblies will be represented by a parameter

vector β, where βij indicates the connection parameter from neural assembly j to neural

assembly i. Our goal is to use the recorded time series from each electrode to continu-

ously estimate these βij parameters and determine which of the estimates are statistically

significant, resulting in identified network links.

Using the ensemble Kalman filter produces an estimate of the error of the parameter

estimate, given by the diagonal entry of the covariance matrix P+
k corresponding to the

parameter in question. Let βij be an estimated parameter in the state vector at time step k

and let σ2 be the corresponding diagonal entry of the covariance matrix P+
k . The standard

confidence interval for βij with confidence level γ0 is
[
β − κ(1−γ0)/2σ, β + κ(1−γ0)/2σ

]
where

κ(1−γ0)/2 is the (1− γ0)/2 quantile of the normal distribution. Thus, we can apply a Wald

test for connectivity parameter βij = 0 by asking whether 0 lies in the above confidence

interval.
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Fig. 6.2(a) shows that when data is fit with the correct model, the specificity and

sensitivity results are correct at the 95% confidence level, independent of system noise.

Here we used the Hindmarsh-Rose equations (6.2) both to generate data and as f in the

EnKF equations.

To validate the method for use with real data, in Fig. 6.2(b)we test significant model

error, caused by a mismatch in dynamics. Consider the Hodgkin-Huxley model [15] with

original parameters as implemented by [82], expanded to a network of n equations

V̇i = −gNam3h(Vi − ENa)− gKn4(Vi − EK)− gL(Vi − EL) + I +
n∑
j 6=i

ΓHH(Vj)Vj

ṁi = am(Vi)(1−mi)− bm(Vi)mi

ḣi = ah(Vi)(1− hi)− bh(Vi)hi

ṅi = an(Vi)(1− ni)− bn(Vi)ni

with model functions

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10))

bm(V ) = 4 exp(−(V + 65)/18)

ah(V ) = 0.07 exp(−(V + 65)/20)

bh(V ) = 1/(1 + exp(−(V + 35)/10))

an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10))

bn(V ) = 0.125 exp(−(V + 65)/80)

for i = 1, . . . , n and with gating function ΓHH(Vj) = βij/(1+e−10(Vj+40)) connecting neurons

as in (6.2). The observables are the voltage variables Vi perturbed with noise, namely

Vi+σẆi. We assimilate this Hodgkin-Huxley data to the Hindmarsh-Rose model (6.2) and

use the EnKF method to estimate the connectivity parameters.
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The identification of network links using data from a significantly different neuron model

presents a new challenge. To handle the increased model error, we designate certain of the

model parameters as free states while fixing others. We fix b = 9, c = 5, µ = .001 and leave

a, α, I as free states to be estimated along with the model variables. Additionally, we have

to carefully tune parameters in the EnKF algorithm to prevent the covariance matrix from

becoming degenerate and causing filter divergence, using a covariance inflation method. See

[30] and the references therein for approaches to covariance inflation and tuning.

In an attempt to develop a fair test for our method, we simulate random networks of five

noisy Hodgkin-Huxley neurons where each connected pair has a bi-directional relationship.

That is, for every βij there is a βji in the network. Observational noise is used on the

horizontal axis rather than system noise since the discrepancy in dynamics between the

Hodgkin-Huxley data and our neuron model is already so large that the addition of extra

system noise has no important effect.

Fig. 6.2(b) shows that the EnKF method is successful in determining the neurons that

are connected to one another, identifying that a statistically significant connection exists

between a connected pair. As the amount of observational noise increases, our method

maintains specificity around 95% showing that our results are statistically significant. Sen-

sitivity persists around 70% showing that the method is finding the majority of the network

links.

6.3 Link Tracking

A significant application of this method is to detect the appearance and disappearance of

connections in nonstationary networks, such as neural cultures. To verify the methodology

for this purpose, we ran a simulated test of a Hodgkin-Huxley neural network where one of

the network connections βij was turned on and off randomly. We used the above method to

assimilate the voltage measurements only from the network, and purposely used the wrong

model (Hindmarsh-Rose) in the EnKF, so that model mismatch was severe, and asked the

method to track the changes.
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Figure 6.3: Tracking results of a time-varying connection in a five neuron network of
Hodgkin-Huxley neurons over 160 seconds of simulation data. Connection turned on/off
randomly. Bottom traces of figure show the actual “on” time (grey bar) and the filter-
estimated “on” time of the connection (black bar). Top traces of figure show the filter
estimated connection strength and corresponding 95% confidence region.

We established the following protocol for determining the on/off transitions of the con-

nection. When the connection is off, the protocol says to declare a transition from “off” to

“on” when the mean estimated connection strength increases beyond the minimum (since

the last “on” transition) of the confidence interval maximum; and vice versa for “off”.

Fig. 6.3 shows the ability of the method to detect these changes with minimal latency. The

reconstructed parameter value of the βij as a function of time is plotted in the upper trace,

along with 95% confidence limits. The lower grey trace is the imposed “on” time of the

connection; in between these times the connection is set to zero. The lower black traces

show the intervals at which the assimilation method finds a nonzero connection according to

the above protocol. These results show the ability of the method to detect nonstationarities

with minimal latency.
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In Fig. 6.4, we apply the method to the in vitro data from the cell culture. Each panel of

the figure shows the method’s continuous tracking of a different βij connectivity parameter

with the appropriate 95% shaded confidence region over 160 seconds of recorded data. A

connection is detected with 95% confidence when the 95% confidence region does not include

0. Panels (a)-(c) show three estimated βij parameters and their respective confidence regions

from a small network with five active electrodes. (a) and (b) show identified links within

the confidence level, while panel (c) shows a clear non-connection. Panel (d) shows a βij

parameter from a larger network with twelve active electrodes. Here is a difficult case. As

the filter gains more information about the network, it is stating that the connection exists,

at least within the confidence level used.

Fig. 6.5(a) shows the estimated network connection matrix and corresponding time of

statistical significance for 160 seconds of data from the small MEA network with five active

electrodes at the 95% confidence level. Of the twenty possible connections in this network,

only seven were determined to be statistically significant. These were found significant

throughout the entire data series showing that our method was highly confident in their

existence.

Fig. 6.5(b) shows the estimated connection matrix computed from a 160 second interval

of data from the larger network with twelve active electrodes at the 95% confidence level.

Out of the possible 132 connections, 28 were found to be significant at some time during the

interval. This larger network presented questionable cases, typically whereby a connection

parameter was initially not significant but became an identified link as more data was

assimilated. All of the 28 connections that were statistically significant for part of the

interval were significant for at least 50% of the interval, and 14 of the 28 were significant

during more than 90% of the interval, as shown in the figure.
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6.4 Conclusion

A method that can carry out sequential tracking of neuronal network links has a major

advantage for experimental purposes. Using an EnKF with a general neuron model is a

way to provide a statistically driven estimate of network connectivity that is updated con-

tinuously as data arrives, unlike offline methods such as [77–79]. This allows application

to network structures with moderate nonstationarity, a typical feature of neural ensembles

and biological networks in general. As shown above, this algorithm for detecting connectiv-

ity meets our criteria of being statistically based, robust to error and capable of real-time

implementation.

We showed in simulation and with measured data from neural cultures that such a

method can work successfully. The choice of the model in the EnKF plays a critical role.

Figs. 2 and 3 illustrate the dependence on model mismatch. Certainly, if the model is not

representative of the basic dynamics of the underlying system, results will be compromised.

A feature of this approach is that allowing parameters of the mathematical model in the

EnKF to float may temper the mismatch between the dynamics of the model and the

experimental system, resulting in more accuracy in the fitted connection parameters. A

deeper study of the dependence on models is a fruitful direction for future work.

A related question is whether nonstationarity of the underlying system can confound

attempts to find the correct connections. Undoubtedly this is true in some circumstances;

in particular, the connections may be changing during the experiment. We attempt to

minimize false conclusions by allowing parameters in the model to drift along with the data,

to possibly correct for some of the nonstationarity in the experimental system, independent

of the connections, but careful analysis of this possibility is beyond the scope of this work.

While the MEAs are plated at a high density of neuronal cells, observation of the

network is restricted to the array’s 64 electrodes. While this may seem an undersampling of

the network, tracking the connections between observed neural ensembles at each electrode

may allow us to implement significant network control. This new technique opens up several

possible experimental strategies, including pharmacological and electrophysiological studies
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where the effects of an applied drug or pulse pattern on connectivity are to be determined.

The ability to continuously track connectivity is designed to provide real-time feedback in

an experimental situation, allowing an researcher to adjust observation, control or other

interventions.

Although we expect the statistical method outlined here to greatly expedite several prox-

imate research goals such as tracking and control of neural cultures, the further objective

of generalizing the application of this statistical method from cultures to the in vivo brain

presents clear challenges. While the cultures present dynamics that are on the whole rel-

atively non-synchronous, activity arising from giant depolarizing potentials [83] and sharp

wave ripple events [84] show significant synchronicity, even in heterogeneous populations

of cells. Extreme activity of this type could make network connectivity an unobservable

quantity, due to the swamping of evidence necessary to determine cause-and-effect. In such

cases, the method outlined here could be prevented from providing a reliable estimate of

the link structure as long as the synchronization persisted. Further development of the

method described here or complementary approaches for determining connectivity in these

and other complex biological events is the subject of future work. Though these limita-

tions exist, implementation of our method in in vivo experimental situations such as those

described in [85] and [86] could provide valuable insight to researchers.
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(a) (b)

(c) (d)

Figure 6.4: Four example in vitro βij parameters tracked over 160 seconds of data. Solid

black line indicates the estimated connection strength and shaded grey area denotes 95%
confidence region. A link is detected with 95% confidence when the 95% confidence region
does not include 0. Panels (a)-(c) show three estimated βij parameters from a small network

with five active electrodes, (a) β41 (b) β35 (c) β15. (a) and (b) show identified links within
the confidence level and panel (c) shows a non-connection. Panel (d) shows a difficult
case from the larger network with twelve active electrodes. Initially the connection β53 is
not significant, but as the filter gains more information about the network it becomes an
identified link.
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(a)

(b)

Figure 6.5: Estimated network connection matrices for 160 seconds of data from two MEA
networks. The percentage time of statistical significance for (a) smaller network with five
active electrodes and (b) larger network with twelve active electrodes is shown. A βij
connection was determined to be significant by our method when its 95% confidence region
did not include 0. In (a), seven of twenty possible connections were found to be significant
throughout the entire data set. In (b), 28 of 132 possible connections were found to be
significant for at least 50% of the time interval.
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Chapter 7: Reconstructing neural dynamics using data

assimilation with multiple models

The following chapter has been published here [87].

The standard data assimilation technique is limited to the reconstruction of state vari-

ables and parameters that are explicitly represented in the model. In this chapter, we show

how this general methodology can be naturally extended further, to reconstruct variables

of the system that do not appear in the model, but for which limited time series measure-

ments are available. A result of Takens [88–91] shows that sufficiently generic time series

measurements can be used to reconstruct system dynamics. This knowledge has been long

used as a basis for black-box prediction, noise reduction, and control protocols for nonlinear

systems. Here we take a first step at merging this powerful theory with modern methods

of data analysis that can exploit information from models.

The basic concept involves assimilating the available time series in parallel with multiple,

different versions of the model. In our examples, we use a single model under a variety of

fixed parameter settings. During a training period, data from both modeled variables and

the unmodeled variable are available, and a parameterized combination of reconstructed

model variables is fit to the unmodeled variable. After the training period, this combination

is used to track the unmodeled variable. An arbitrary number of unmodeled variables can

be tracked simultaneously and independently with this method.

Our approach essentially merges two lines of research on modeling and predicting be-

havior of nonlinear systems. One direction, motivated by the seminal paper by Lorenz [92],

attempts to build a collection of models with slightly different parameters, and regress dur-

ing a training period on the outputs of the models of a particular variable to build a good

predictor for that variable [93, 94]. Independently, researchers in data assimilation have
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used multimodel versions of the Kalman filter [95] and the EnKF [96–98] to improve the

tracking capability of the modeled variables. Our approach combines the ideas by training

a multimodel EnKF on some known time series data from a variable that is not included

in the underlying model, and using the fitted result to predict the unmodeled variable after

the training period ends. We think of the approach as a “platypus” method, since our basic

ansatz is that the unmodeled variable is a combination of nominally unrelated parts.

A further advantage of a data assimilation approach to the problem is that after the

training period, the unmodeled variable can be computed in real time. Moreover, if further

training data becomes subsequently available, it can be easily exploited to further refine

the parameterized combination, or to do realtime tracking under circumstances of drifting

parameters.

7.1 Reconstructing Unmodeled Variables

To illustrate the idea, assume the system model

ẋ = f(x, p) + ωt (7.1)

y = h(x) + νt

for state vector x and vector p of parameters. Here ωt and νt are white noise inputs. The

function h is a vector-valued observation of the state. The standard filtering problem is to

use the time series of observations yt to calculate an estimate for the current state x.

The innovation of this method is to go beyond estimating unobserved variables and

parameters in the model, i.e. the components of x and p, to estimate quantities that are

not explicit model variables or parameters. We assume that a time series St of the desired

unmodeled variable is available during a training phase, with the goal of continuing to

estimate the variable after the training period has ended.

We construct a parallel set of m subfilters, each of which are the system model with

separate parameter settings pi. This parallel set is used for data assimilation during the
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training phase, corresponding to the equation

ẇ = F (w) + ωt (7.2)

y

...

y

S


= H(w) + νt

where

w =



x1

...

xm

c1

...

cm

d



F =



f(x, p1)

...

f(x, pm)

0

...

0

0



H(w) =



h(x1)

...

h(xm)∑
i,j

cijx
i
j + d



Note that each xi denotes a separate copy of the system state vector, with n components

xij for j = 1, . . . , n. Each ci is an unknown coefficient vector of n components cij that will

be learned along with the states xi during the assimilation process, in order to best fit the

unmodeled variable S =
∑
i,j

cijx
i
j + d. The inputs to the assimilation procedure during the

training phase are the modeled observables yt, and the time series St of the unmodeled

variable, that is provided only during the training phase. The coefficients cij and d are

estimated during the training phase (along with the system variables xij), and then fixed
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during the prediction phase, which uses only the yt inputs, and assimilates the system model

ẇ = F (w) (7.3)
y

...

y

 = H(w)

where

w =


x1

...

xm

 , F =


f(x, p1)

...

f(x, pm)

 , H(w) =


h(x1)

...

h(xm)

 .

During the prediction phase, the expression
∑
i,j

cijx
i
j + d gives an estimate of the unmodeled

quantity S using only the yt inputs.

As a simple demonstration, we describe the reconstruction of a gating variable from the

Hodgkin-Huxley (HH) neural model [15] consisting of four differential equations, modeling

the voltage V and three gating variables h,m and n (see Chapter 6). We will use the

Hodgkin-Huxley equations to generate a time series of the four variables. However, for the

purposes of the illustration, we make no use of the knowledge of how the time series was

created. As the assimilation model, we purposely choose an unrelated, standard spiking

model, the Hindmarsh-Rose (HR) equations [20]

V̇ = y − V 3 + 3V 2 − z + I

ẏ = 1− bV 2 − y (7.4)

ż = τ(s(V + 1)− z)

where V represents voltage, y is a fast recovery variable and z is a slow variable. The
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(a) (b)

(c) (d)

Figure 7.1: Hodgkin-Huxley time series is input into the EnKF using Hindmarsh-Rose
multiple models. The end of the training phase and beginning of prediction phase are
shown. (a) Hodgkin-Huxley voltage (black) and assimilated version of voltage in training
phase (blue) and prediction phase (red). (b) Hodgkin-Huxley gating variable h (black)
and assimilated version of h. During the prediction phase (red), only the Hodgkin-Huxley
voltage is available to the EnKF. The procedure also obtains the other two Hodgkin-Huxley
gating variables, (c) m and (d) n.

rate of z is controlled by time scale parameter τ , while I, b and s are free parameters to

be estimated alongside the state variables V, y and z by the EnKF [31, 50, 61, 62]. We use

V (t) and h(t) from the Hodgkin-Huxley series during the training phase. Note that (1) the

gating variable h(t) is not explicitly represented as a variable in the assimilation model (the

60



www.manaraa.com

Hindmarsh-Rose equations) and is therefore an unmodeled dynamic, and (2) the waveforms

of HR (see Fig. 2(b) for an example) are quite unlike all waveforms of the HH variables (see

Fig. 1(a)-(d)).

In the assimilation process, we use two HR models to reconstruct h(t), with timescale

parameters τ1 = 0.001 and τ2 = 0.1, respectively. According to (7.2), we make the ap-

proximation h(t) ≈
∑

i,j c
i
jx
i
j + d. Using two assimilation models, this approximation dur-

ing the training phase can be achieved several ways. If we reconstruct using only the y

variables from the models, we find h(t) ≈ −2.46y1 + 1.92y2 + 0.50 as a result of the train-

ing phase. This approximation gives us prediction root mean squared error (RMSE) =

0.140. A much improved reconstruction uses only the z variables, giving the approximation

h(t) ≈ 1.21z1−0.17z2−1.35 which yields prediction RMSE = 0.025. Using both the y and z

variables yields the most accurate estimate h(t) ≈ −0.42y1 +0.33z1 +0.48y2−0.16z2−0.83,

and prediction RMSE = 0.016, shown in Fig. 1(b). When it is unknown a priori which

variables allow for a more faithful reconstruction of the unmodeled quantity, all variables

can be considered for discovery of the optimal weighting. We repeat this process and re-

construct the m(t) and n(t) gating variables, shown in Fig. 1(c-d), using two assimilation

models each.

7.2 Reconstructing Seizure Dynamics

To further simulate the type of model error we would encounter in a laboratory setting,

we consider data generated from a second, more sophisticated system as described in [16],

where it was used to investigate ionically mediated bursting. The model equations (see Ap-

pendix B2) include the membrane potential based on transmembrane currents for sodium

and potassium. The gating variables for potassium activation and sodium inactivation are

modeled dynamically whereas the sodium activation is assumed instantaneous. In addition,

the ionic dynamics for extracellular and intracellular potassium and sodium concentrations,
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(a) (b)

(c) (d)

Figure 7.2: A single seizing neuron is driven by a Poisson spike train with constant parameter
λ. The neuron voltage (a) is continuously measured, and assimilated using the EnKF with
three versions of HR, whose voltage trace is shown in (b) with parameters b = 5, τ =
0.001, s = 4 and I = 0. Potassium (c) and sodium (d) are only observed for a brief training
period of 200 s. During the training period, our algorithm finds the optimal combination of
the model variables (blue). After this training period, we can predict (red) the potassium
(RMSE = 0.12) and sodium (RMSE = 0.11) dynamics from the three HR models.

respectively, are modeled by two equations. Sodium concentrations depend only on trans-

membrane conductances making their intra- and extracellular concentrations linked through

mass conservation. The extracellular potassium dynamics also include glial buffering.

The model was driven by a Poisson spike train to create a sequence of irregular seizures,

shown in Fig. 2(a). As with the HH data from our first example, the potential is treated
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(a)

(b)

Figure 7.3: A single seizing neuron is driven by a poisson spike train with increasing time-
varying poisson parameter λ. Three models are used for the data assimilation. The neuron
voltage (a) is continuously measured while the potassium (b) and sodium (c) are only
observed for a brief training period of 200 s. After the training period during which we
find the optimal combination of the models (blue), the measurement of potassium and
sodium is turned off and we predict (red) their changes while only assimilating the neuron
voltage. Our prediction of potassium and sodium both prove to be fairly robust to the
nonstationarity of the driving input (RMSE = 0.18 and RMSE = 0.27 respectively). There
is some additional prediction error caused by the variability in seizure rate, but overall the
correct dynamics are predicted.

as the observable of the system. The goal is to use data assimilation with the (unrelated)

HR model to reconstruct and predict the sodium and potassium concentrations, given only

the voltage and a brief sequence of training data. The increased complexity of these data

requires us to use three copies of the HR model. We set two of the models to have timescale

parameters τ1 = 0.001 and τ2 = 0.0001 and individually optimize the third timescale,

τ3, for minimum training phase RMSE. Fig. 7.2 shows the resulting reconstruction of the
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(a)

(b)

Figure 7.4: A single seizing neuron is driven by a poisson spike train with decreasing time-
varying poisson parameter λ. Three models are used for the data assimilation. The neuron
voltage (a) is continuously measured while the potassium (b) and sodium (c) are only
observed for a brief training period of 200 s. After the training period during which we find
the optimal combination of the models (blue), the measurement of potassium and sodium
is turned off and we predict (red) their changes while only assimilating the neuron voltage.
Once again, the prediction of potassium is fairly successful (RMSE = 0.18). However, in this
instance we can see that our prediction of sodium suffers significantly (RMSE = 0.64). This
additional error could be resolved by expanding the training data set or through periodic
measurements of the concentrations allowing us to adjust the optimal model combination.

potassium and sodium dynamics from this system. Using only three assimilation models

we are able to reconstruct these quantities with a high degree of accuracy (RMSE = 0.12

and 0.11, respectively).

To demonstrate the ability of our method to reconstruct unmodeled variables under

system nonstationarity, we varied the rate of the stimulating Poisson spike train. Figure 7.3

shows the potassium and sodium reconstruction results when the rate decreases and Figure
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Figure 7.5: A potassium sensitive electrode is used to record the extracellular potassium
concentration changes in a small region between three active electrodes of an in vitro corti-
cal culture plated on an MEA. During a 110 s training period, the potential from the three
electrodes is assimilated and estimated with our EnKF (bottom) while an optimal combina-
tion of the model variables is found (top, blue) to reconstruct the measured potassium (top,
black). For this example, each electrode is represented by four differently parameterized
models, resulting in a total of twelve system models.

7.4 shows the reconstruction when the rate increases. While the predictive capabilities of

our reconstruction proves accurate under some system nonstationarity, the degradation in

accuracy of the sodium reconstruction in Figure 7.4 suggests that periodic measurements

or an extended training data set would be needed in some situations.

7.3 Tracking In Vitro Extracellular Potassium

To apply the method in a laboratory setting, we collected a potassium time series from a

neural culture experiment. Neural cultures were prepared as discussed in Chapter 2. Each
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Figure 7.6: After the training period is complete, eqn. (7.3) accurately predicts (RMSE
= 0.024) the potassium concentration changes during spontaneous activity while using as
input only the neural potential from 3 MEA electrodes.

electrode was recorded at a rate of 25 kHz, but here was downsampled to 1 kHz. Individual

units on active electrodes were not sorted, meaning each electrode was considered as a

neural assembly. The recorded time series from each electrode was filtered and rectified

prior to assimilation.

Local potassium measurements were performed using the same type of resin-based potas-

sium sensitive microelectrodes used in slice experiments [99]. Potassium and reference elec-

trodes are positioned in the mat of cultured cells located in the vicinity of a three active

MEA recording sites. The potassium data are acquired using an high impedance differential

amplifier and digitized and recorded at 100 Hz. The data are low-pass filtered and input to

the Nernst equation to find to potassium concentration in the vicinity of the electrode.
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Fig. 3 shows the recorded in vitro neural activity from each of the three electrodes

during the training phase. The assimilation is done with eqn. (7.2) using four HR models

for each electrode, with timescales τ1 = 0.001, τ2 = 0.0001, τ3 = 0.005, τ4 = 0.0005, resulting

in a total of twelve system models. Here the training period is only 110 seconds, during

which the potassium and potential are available for assimilation and an optimal weighting

of the twelve models is found to reconstruct the potassium time series. Fig. 4 shows the

prediction phase, where we are able to track the potassium dynamics while only assimilating

the neural potential. Discrepancy between the actual and predicted values may be partially

attributed to uncertainties in our measurement, since the potassium is recorded from a

general region rather than a specific cell and there are likely other active neurons in the

area, contributing to the potassium changes whose potential we are unable to capture due

to the MEA architecture.

7.4 Conclusion

We have introduced an extension of standard data assimilation techniques, based on Takens’

embedding theorem, that uses a short time series from an unmodeled variable to train

a predictor for the variable using multiple versions of the model. The use of multiple

versions serves to bring the strength of relatively simple mathematical modeling to bear

on complicated dynamics, by training with time series data. For simplicity, we described

an implementation with the Ensemble Kalman Filter, and used the Hindmarsh-Rose as a

basic model, even though the latter is designed for intracellular, not extracellular dynamics.

With appropriate modifications, other data assimilation techniques, and other models, can

be readily substituted.

The approach taken here is global in the sense that the coefficients cij are constant in

phase space. To the extent that the data makes it practical, it may be beneficial to develop

a further extension of these ideas that treats the data more locally.

Although we demonstrate its use for variables that do not appear in the model, the

method can be beneficial in cases of poorly-modeled variables, or in general when model
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error is significant. The success of the method will depend on the choice of the multiple

models. We have found that the method works well when using neural models to recon-

struct quantities that are not included among the model variables. Its use will be crucial

for experiments on control of spreading depression and seizures in neural cultures, where

extensive, realtime measurements of potassium and calcium concentrations are needed but

are not feasible, while voltages are easily available. We expect the method to find appli-

cation in a variety of physics, geophysics and biological contexts where current models are

poor or nonexistent.
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Appendix A: Appendix

A.1 Rederiving Kalman Filter Equations

An alternative formulation of the Kalman filter equations can be derived that allows for

ease of implementation in nonlinear filtering schemes. The following derivation follows that

found in [54] though more details are shown here. Assume a linear discrete-time system

x(k) = F (k − 1)x(k − 1) + w(k − 1)

y(k) = A(k)x(k) + v(k)

where w(k) and v(k) are independent and zero-mean with respective covariances Q(k) and

R(k).

Let us assume that we have an a priori estimate x̂−(k) at time k. We would like to

update this state based on a measurement taken at time k. We update the state estimate

with the following linear equation

x̂+(k) = K(k)y(k) + b(k)

From this point on we will drop the k in notation and equations for the sake of brevity. We

know that for a general random vector z that

Pz = E[(z − z̄)(z − z̄)T ]

= E[zzT ]− z̄z̄T

We are interested in minimizing the trace of the following matrix

P+
x = E[(x− x̂+)(x− x̂+)T ]
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Why the trace? Essentially we would like to minimize the 2-norm of the matrix (Frobenius

norm) which is defined as

||A||2 =
√
trace(AA∗)

where A is an arbitrary matrix.

If we define z = x− x̂+ we have

P+
x = E[(x− x̂+)(x− x̂+)T ]

= E[zzT ]

= Pz + z̄z̄T
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We calculate Pz as follows:

Pz = E[((x− x̂+)− E(x− x̂+))(. . .)T ]

= E[((x− x̂+)− (x̄− (Kȳ + b)))(. . .)T ]

= E[((x− (Ky + b))− (x̄− (Kȳ + b)))(. . .)T ]

= E[(x−Ky − b− x̄+Kȳ + b)(. . .)T ]

= E[(x− x̄−K(y − ȳ))(. . .)T ]

= E[(x− x̄−K(y − ȳ))(x− x̄−K(y − ȳ))T ]

= E[xxT − xx̄T − x(K(y − ȳ))T − x̄xT + x̄x̄T + x̄(K(y − ȳ))T

− K(y − ȳ)xT +K(y − ȳ)x̄T +K(y − ȳ)(K(y − ȳ))T ]

= E[xxT − xx̄T − x̄xT + x̄x̄T ] + E[−K(y − ȳ)xT +K(y − ȳ)x̄T ]

+ E[−x(K(y − ȳ))T + x̄(K(y − ȳ))T ] + E[K(y − ȳ)(K(y − ȳ))T ]

= E[(x− x̄)(x− x̄)T ]−KE[(y − ȳ)(x− x̄)T ]− E[(x− x̄)(y − ȳ)T ]KT +KE[(y − ȳ)(y − ȳ)T ]KT

= P−x −KPyx − PxyKT +KPyK
T

Now we can calculate

P+
x = Pz + z̄z̄T

= P−x −KPyx − PxyKT +KPyK
T + E[x− x̂+](E[x− x̂+])T

= P−x −KPyx − PxyKT +KPyK
T + (x̄−Kȳ − b)(x̄−Kȳ − b)T

= (K − PxyP−1
y )Py(K − PxyP−1

y )T + (P−x − PxyP−1
y P Txy) + (x̄−Kȳ − b)(x̄−Kȳ − b)T
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Now,

Tr(P+
x ) = Tr((K − PxyP−1

y )Py(K − PxyP−1
y )T + (P−x − PxyP−1

y P Txy) + (x̄−Kȳ − b)(x̄−Kȳ − b)T )

= Tr((K − PxyP−1
y )Py(K − PxyP−1

y )T ) + Tr(P−x − PxyP−1
y P Txy)

+ Tr((x̄−Kȳ − b)(x̄−Kȳ − b)T )

It is clear that to minimize the above we set

K = PxyP
−1
y

b = x̄−Kȳ

This then allows us to write the following equations

x̂+ = Ky + b

= Ky + x̄−Kȳ

= Ky + x̂− −KAx̂−

= x̂− +K(y −Ax̂−)

P+
x = P−x − PxyP−1

y Pyx

72



www.manaraa.com

We also see that

Pxy = E[(x− x̄)(y − ȳ)T ]

= E[(x− x̄)(Ax+ v −Ax̄)T ]

= E[(x− x̄)(xTAT + vT − x̄TAT )]

= E[xxTAT + xvT − xx̄TAT − x̄xTAT − x̄vT + x̄x̄TAT ]

= E[xxT − xx̄T − x̄xT + x̄x̄T ]AT + E[xvT − x̄vT ]

= P−x A
T

and

Py = E[(y − ȳ)(y − ȳ)T ]

= E[yyT − yȳT − ȳyT + ȳȳT ]

= E[(Ax+ v)(xTAT + vT )− (Ax+ v)x̄TAT −Ax̄(xTAT + vT ) +Ax̄x̄TAT ]

= AE[xxT − xx̄T − x̄x+x̄x̄T ]AT + E[vvT ] + E[AxvT + vxTAT + vx̄TAT −Ax̄vT ]

= AP−x A
T +R

The equations for K and P−x are different from the ones derived earlier:

K = P−x A
T (AP−x A

T +R)−1 → PxyP
−1
y (A.1)

P+
x = (I −KA)P−x → P−x − PxyP−1

y Pyx (A.2)

We show this first for Equation A.1:

K = P−x A
T (AP−x A

T +R)−1

= PxyP
−1
y
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We now show this for Equation A.2:

P+
x = (I −KA)P−x

= P−x −KAP−x

= P−x − PxyP−1
y AP−x

= P−x − PxyP−1
y (P−x A

T )T

= P−x − PxyP−1
y (Pxy)

T

= P−x − PxyP−1
y Pyx

In summary, we have the following equations for implementing the Kalman filter:

x̂−(k) = F (k − 1)x̂+(k − 1)

P−x (k) = F (k − 1)P+
x (k − 1)F T (k − 1) +Q(k)

Pxy = P−x A
T

Py = AP−x A
T +R

x̂+(k) = x̂−(k) +K(k)(y(k)−A(k)x̂−(k))

P+
x (k) = P−x (k)− PxyP−1

y Pyx

A.2 Error in Approximating Nonlinear Systems

The following derivation follows that found in [54], but more details are included here. Let

us consider a general nonlinear transformation

y = h(x)

where x is an n×1 vector. We write a Taylor series expansion of the above around the point

x = x̄ defining x̃ = x − x̄ as a zero-mean random variable with a symmetric probability
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density function (pdf):

y = h(x)

= h(x̄) +Dx̃h+
1

2!
D2
x̃h+

1

3!
D3
x̃h+ . . .

where

Dk
x̃h =

(
n∑
i=1

x̃i
∂

∂xi

)k
h(x)

∣∣∣∣
x=x̄

Now we first would like to find the mean of y, ȳ:

ȳ = E

[
h(x̄) +Dx̃h+

1

2!
D2
x̃h+

1

3!
D3
x̃h+ . . .

]

= h(x̄) + E

[
Dx̃h+

1

2!
D2
x̃h+

1

3!
D3
x̃h+ . . .

]

Before we work with this further, let us consider a random variable X that has zero mean

and symmetric pdf (i.e. fX(x) = fX(−x)). In calculating the ith moment of X (where i is
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odd) we see

E[Xi] =

∫ ∞
−∞

xifX(x)dx

=

∫ 0

−∞
xifX(x)dx+

∫ ∞
0

xifX(x)dx

= −
∫ 0

−∞
(−x)ifX(−x)dx+

∫ ∞
0

xifX(x)dx

=

∫ ∞
0

(−x)ifX(x)dx+

∫ ∞
0

xifX(x)dx

= −
∫ ∞

0
xifX(x)dx+

∫ ∞
0

xifX(x)dx

= 0

Now, when x is a vector this same argument holds although the formulation above is slightly

different. Looking at E[Dx̃h] we see

E[Dx̃h] = E

[
n∑
i=1

x̃i
∂

∂xi
h(x)

∣∣∣∣
x=x̄

]

=
n∑
i=1

E[x̃i]
∂

∂xi
h(x)

∣∣∣∣
x=x̄

= 0

and likewise all all odd order terms will also be equal to zero. As such

ȳ = h(x̄) +
1

2!
E[D2

x̃h] +
1

4!
E[D4

x̃h] + . . . (A.3)
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In addition to the mean ȳ we would also like to find the covariance of y, Py where

Py = E[(y − ȳ)(y − ȳ)T ]

Now, y − ȳ is

y − ȳ =

[
h(x̄) +Dx̃h+

1

2!
D2
x̃h+

1

3!
D3
x̃h+ . . .

]
−
[
h(x̄) +

1

2!
E[D2

x̃h] +
1

4!
E[D4

x̃h] + . . .

]

=

[
Dx̃h+

1

2!
D2
x̃ + . . .

]
+

[
1

2!
E[D2

x̃h] +
1

4!
E[D4

x̃h] + . . .

]

Going back to our definition of Py

Py = E[(y − ȳ)(y − ȳ)T ]

= E

[(
Dx̃h+

1

2!
D2
x̃h+ . . .+

1

2!
E[D2

x̃h] +
1

4!
E[D4

x̃h] + . . .

)
(. . .)T

]

= E

[
Dx̃hD

T
x̃ h+

Dx̃h(D2
x̃h)T

2!
+
Dx̃h(D3

x̃h)T

3!
+ . . .+ E

[
D2
x̃h

2!

]
E

[
D2
x̃h

2!

]T
+ . . .

]

Much like before, we note that the odd order terms fall out. As such

Py = E

[
Dx̃hD

T
x̃ h+

Dx̃h(D2
x̃h)T

2!
+
Dx̃h(D3

x̃h)T

3!
+ . . .+ E

[
D2
x̃h

2!

]
E

[
D2
x̃h

2!

]T
+ . . .

]

= E

[
Dx̃hD

T
x̃ h+

Dx̃h(D3
x̃h)T

3!
+ . . .+ E

[
D2
x̃h

2!

]
E

[
D2
x̃h

2!

]T
+ . . .

]

= E[Dx̃hD
T
x̃ h] + E

[
Dx̃h(D3

x̃h)T

3!
+ . . .

]
+ E

[
D2
x̃h

2!

]
E

[
D2
x̃h

2!

]T
+ . . .
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We can write the first term as

E[Dx̃hD
T
x̃ h] = E

( n∑
i=1

x̃i
∂h

∂xi

∣∣∣∣
x=x̄

) n∑
j=1

x̃j
∂h

∂xj

∣∣∣∣
x=x̄

T


= E

∑
i,j

x̃i
∂h

∂xi

∣∣∣∣
x=x̄

∂hT

∂xj

∣∣∣∣
x=x̄

x̃j



=
∑
i,j

E

[
x̃i
∂h

∂xi

∣∣∣∣
x=x̄

∂hT

∂xj

∣∣∣∣
x=x̄

x̃j

]

=
∑
i,j

∂h

∂xi

∣∣∣∣
x=x̄

E [x̃ix̃j ]
∂hT

∂xj

∣∣∣∣
x=x̄

=
∑
i,j

HiPijH
T
j

= HPHT

We can now write the covariance of y as

Py = HPHT + E

[
Dx̃h(D3

x̃h)T

3!
+ . . .

]
+ E

[
D2
x̃h

2!

]
E

[
D2
x̃h

2!

]T
+ . . . (A.4)

A.2.1 Approximation through Linearization

One way to approximate the nonlinear transformation h is to linearize the system

y = h(x)

≈ h(x̄) +
∂h

∂x

∣∣∣∣
x=x̄

x̃
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We can calculate the mean of the linearized system ȳ`,

ȳ = E [h(x)]

≈ E

[
h(x̄) +

∂h

∂x

∣∣∣∣
x=x̄

x̃

]

= h(x̄) +
∂h

∂x

∣∣∣∣
x=x̄

E[x̃]

= h(x̄)

which is accurate up to first order in comparison to equation A.3. Additionally we can

calculate the covariance of the linearized system P`

P` = E[(y − ȳ)(y − ȳ)T ]

≈ E

[(
h(x̄) +

∂h

∂x

∣∣∣∣
x=x̄

x̃− h(x̄)

)
(. . .)T

]

= E

[(
∂h

∂x

∣∣∣∣
x=x̄

x̃

)(
∂h

∂x

∣∣∣∣
x=x̄

x̃

)T]

=
∂h

∂x

∣∣∣∣
x=x̄

E
[
x̃x̃T

] ∂hT
∂x

∣∣∣∣
x=x̄

= HPHT

which is accurate up to second order in comparison to equation A.4. The approximation of

h by linearization causes us to lose a fair amount of accuracy in representing the true mean

and covariance of the system.

A.2.2 Approximation through the Unscented Transformation

We once again assume a nonlinear transformation

y = h(x)
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The idea behind the unscented transformation [54–56] is to select a set of sigma points

whose ensemble mean and covariance are equal to the known mean x̄ and covariance P

of x. The nonlinear transformation h is applied to each sigma point, resulting in a set of

transformed sigma points. The ensemble mean and covariance of these transformed sigma

points gives us an approximation of the true mean and covariance of y.

The 2n sigma points x(i) are defined as follows

x(i) = x̄+ x̃(i) i = 1, . . . , 2n

x̃(i) = (
√
nP )Ti i = 1, . . . , n

x̃(n+i) = −(
√
nP )Ti i = 1, . . . , n

The nonlinear function is applied to each sigma point resulting in the following transformed

sigma points

y(i) = h
(
x(i)
)

i = 1, . . . , 2n

Like before, we are interested in finding the mean of y. We denote by ȳ the true mean of y

and ȳu the approxmated mean of y resulting from the unscented transformation. We write

ȳu =
2n∑
i=1

W (i)y(i)

where

W (i) =
1

2n
i = 1, . . . , 2n
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As such we can write

ȳu =
1

2n

2n∑
i=1

y(i)

We expand this in a Taylor series around x̄ which gives

ȳu =
1

2n

2n∑
i=1

(
h(x̄) +Dx̃(i)h+

1

2!
D2
x̃(i)
h+ . . .

)

= h(x̄) +
1

2n

2n∑
i=1

(
Dx̃(i)h+

1

2!
D2
x̃(i)
h+ . . .

)

Let us examine the odd terms in the above series. For any k ≥ 0 we see

2n∑
j=1

D2k+1
x̃(j)

h =
2n∑
j=1

( n∑
i=1

x̃
(j)
i

∂

∂xi

)2k+1

h(x)

∣∣∣∣
x=x̄



=
2n∑
j=1

[
n∑
i=1

(
x̃

(j)
i

)2k+1 ∂2k+1

∂x2k+1
i

h(x)

∣∣∣∣
x=x̄

]

=

n∑
i=1

 2n∑
j=1

(
x̃

(j)
i

)2k+1 ∂2k+1

∂x2k+1
i

h(x)

∣∣∣∣
x=x̄


= 0

Based on the sigma points we defined earlier, x̃(j) = −x̃(n+j) where j = 1, . . . , n. For all

odd terms, the odd power will preserve the negative sign in the −x̃(n+j) term. Thus all the

terms in the sum will cancel out.
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This leaves us with

ȳu = h(x̄) +
1

2n

2n∑
i=1

(
1

2!
D2
x̃(i)
h+

1

4!
D4
x̃(i)
h+ . . .

)

= h(x̄) +
1

2n

2n∑
i=1

1

2!
D2
x̃(i)
h+

2n∑
i=1

(
1

4!
D4
x̃(i)
h+

1

6!
D6
x̃(i)
h+ . . .

)

By expanding the second term we see

1

2n

2n∑
i=1

1

2!
D2
x̃(i)
h =

1

2n

2n∑
k=1

1

2!

(
n∑
i=1

x̃
(k)
i

∂

∂xi

)2

h(x)

∣∣∣∣
x=x̄

=
1

4n

2n∑
k=1

n∑
i,j=1

x̃
(k)
i x̃

(k)
j

∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

=
1

4n

n∑
i,j=1

2n∑
k=1

x̃
(k)
i x̃

(k)
j

∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

and since x̃(k) = −x̃(k+n),

2n∑
k=1

x̃
(k)
i x̃

(k)
j = 2

n∑
k=1

x̃
(k)
i x̃

(k)
j
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which allows us to write

1

2n

2n∑
i=1

1

2!
D2
x̃(i)
h =

1

4n

n∑
i,j=1

2n∑
k=1

x̃
(k)
i x̃

(k)
j

∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

=
1

2n

n∑
i,j=1

n∑
k=1

x̃
(k)
i x̃

(k)
j

∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

=
1

2n

n∑
i,j=1

n∑
k=1

(√
nP
)
ki

(√
nP
)
kj

∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

=
1

2n

n∑
i,j=1

nPij
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

=
1

2

n∑
i,j=1

Pij
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

Therefore the approximate mean calculated through the unscented transformation is

ȳu = h(x̄) +
1

2

n∑
i,j=1

Pij
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

+
1

2n

2n∑
i=1

(
1

4!
D4
x̃(i)
h+

1

6!
D6
x̃(i)
h+ . . .

)
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We compare this with equation A.3, where the term 1
2!E[D2

x̃h] can be written as

1

2!
E[D2

x̃h] =
1

2!
E

( n∑
i=1

x̃i
∂

∂xi

)2

h(x)

∣∣∣∣
x=x̄



=
1

2!
E

 n∑
i,j=1

x̃ix̃j
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄



=
1

2!

n∑
i,j=1

E [x̃ix̃j ]
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

=
1

2

n∑
i,j=1

Pij
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

which allows us to write equation A.3 as

ȳ = h(x̄) +
1

2

n∑
i,j=1

Pij
∂2

∂xi∂xj
h(x)

∣∣∣∣
x=x̄

+
1

4!
E[D4

x̃h] +
1

6!
E[D6

x̃h] + . . .

Therefore, ȳu is accurate up to third order. This already represents a signifcant improvement

over linearization whose estimate of the mean was only accurate up to first order terms.

We now look to calculate the covariance approximation Pu resulting from the unscented
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transformation. We define

Pu = E

[
2n∑
i=1

W (i)
(
y(i) − ȳu

)(
y(i) − ȳu

)T]

=
1

2n
E

[
2n∑
i=1

(
y(i) − ȳu

)(
y(i) − ȳu

)T]

=
1

2n
E

[
2n∑
i=1

(
h
(
x(i)
)
− ȳu

)(
h
(
x(i)
)
− ȳu

)T]

=
1

2n
E

[
2n∑
i=1

(
h(x̄) +Dx̃(i)h+

1

2!
D2
x̃(i)
h+ . . .− h(x̄)− 1

2n

2n∑
i=1

1

2!
D2
x̃(i)
h+

1

4!
D4
x̃(i)
h+ . . .

)
(. . .)T

]

Noting that x̃(i) = −x̃(i+n) for i = 1, . . . , n, the odd power terms above will equal 0 using

the same reasoning from before. The majority of the terms will be higher order, and we
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will neglect them. From here we have

Pu =
1

2n
E

[
2n∑
i=1

(
Dx̃(i)h+

1

2!
D2
x̃(i)
h+ . . .− 1

2n

2n∑
i=1

1

2!
D2
x̃(i)
h+

1

4!
D4
x̃(i)
h+ . . .

)
(. . .)T

]

=
1

2n
E

 2n∑
i=1

(Dx̃(i)h)

(
Dx̃(i)h+

1

2!
D2
x̃(i)
h+ . . .− 1

2n

2n∑
i=1

1

2!
D2
x̃(i)
h+

1

4!
D4
x̃(i)
h+ . . .

)T
+H.O.T



=
1

2n

2n∑
i=1

E
[
(Dx̃(i)h) (Dx̃(i)h)T

]
+H.O.T

=
1

2n
E

 2n∑
i=1

n∑
j,k=1

(
x̃

(i)
j

∂

∂xj
h(x)

∣∣∣∣
x=x̄

)(
x̃

(i)
k

∂

∂xk
h(x)

∣∣∣∣
x=x̄

)T+H.O.T

=
1

2n
E

 n∑
j,k=1

2n∑
i=1

(
x̃

(i)
j

∂

∂xj
h(x)

∣∣∣∣
x=x̄

)(
x̃

(i)
k

∂

∂xk
h(x)

∣∣∣∣
x=x̄

)T+H.O.T

=
1

n
E

 n∑
j,k=1

n∑
i=1

(
x̃

(i)
j

∂

∂xj
h(x)

∣∣∣∣
x=x̄

)(
x̃

(i)
k

∂

∂xk
h(x)

∣∣∣∣
x=x̄

)T+H.O.T

=
1

n
E

 n∑
j,k=1

(
∂

∂xj
h(x)

∣∣∣∣
x=x̄

)( n∑
i=1

(
x̃

(i)
j

)(
x̃

(i)
k

)T)( ∂

∂xk
h(x)

∣∣∣∣
x=x̄

)T+H.O.T

=
1

n

n∑
j,k=1

(
∂

∂xj
h(x)

∣∣∣∣
x=x̄

)( n∑
i=1

E

[(
x̃

(i)
j

)(
x̃

(i)
k

)T])( ∂

∂xk
h(x)

∣∣∣∣
x=x̄

)T
+H.O.T

=
n∑

j,k=1

(
∂

∂xj
h(x)

∣∣∣∣
x=x̄

)
Pjk

(
∂

∂xk
h(x)

∣∣∣∣
x=x̄

)T
+H.O.T

= HPHT +H.O.T

which is accurate to second order in comparison with equation A.4. This is the same order

of accuracy as linearization, but of note is that the unscented approximation includes the

higher order terms of appropriate sign while linearization only includes HPHT .

86



www.manaraa.com

A.3 Model of ionically mediated bursting

The seizure model developed in [16] consists of five differential equations,

C
dV

dt
= −INa − IK − ICl + Istim

τ
d[K]o
dt

= γβ(IK − 2Ipump)− Ĩglia − Ĩdiffusion

τ
d[Na]i
dt

= −γ(INa + 3Ipump)

dh

dt
= φ [αh(V )(1− h)− βh(V )h]

dn

dt
= φ [αn(V )(1− n)− βn(V )n]

The first equation describes the spiking behavior where C is the membrane capacitance, V

is the membrane potential, and the membrane ion current densities are defined as

INa = gNam
3
∞h (V − ENa) + gNaL (V − ENa)

IK = gKn
4 (V − EK) + gKL (V − EK)

ICl = gClL (V − ECl)

Istim is a stimulating Poisson spike train with parameter λ. The second and third differential

equations model the time evolution of the local extracellular potassium and the intracellular

sodium concentrations. In these equations the Ĩs are molar currents (millimolars per second)

87



www.manaraa.com

and depend on the ion concentrations as follows:

Ip =
ρ

γ

 1

1 + exp
(

25.0−[Na]i
3.0

)
( 1

1 + exp (5.5− [K]o)

)

Ĩdiff = ε
(
[K]o − [K+]bath

)
Ĩglia =

Gglia

1.0 + exp
(

18.0−[K]o
2.5

) .

The fourth and fifth differential equations represent the gating variables where

αh(V ) = 0.07 exp

(
−V + 44

20

)

βh(V ) =
1

1 + exp(−0.1(V + 14))

αn(V ) =
0.01(V + 34)

1− exp(−0.1(V + 34))

βn(V ) = 0.125 exp

(
−V + 44

80

)

For simplification, we follow [16] in making the assumption

[K]i = 140.0 mM + (18.0 mM− [Na]i)

[Na]o = 144.0 mM− β ([Na]i − 18.0 mM) .
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which allows us to define the sodium and potassium equilibrium potentials ENa and EK ,

respectively

EK = 26.64 ln
(

[K]o
[K]i

)
ENa = 26.64 ln

(
[Na]o
[Na]i

)
.
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